Monitoring Learning Abilities in Children at High Risk

Anne Synnes MDCM, MHSc BC Women's Hospital University of British Columbia

Objectives

- What are learning abilities and learning disabilities?
- Who is high risk?
- Review surveillance, screening, evaluation and intervention in the high risk populations
- How to monitor for learning abilities

Definition of Learning Ability

- "The ability to comprehend; to understand and profit from experience"
 - Comprehend: Sensory input and Attention
 - Understand: Cognitive
 - Profit from: Output
 - Motor output
 - Communication

Learning Disability

- In individuals with at least average abilities, learning disabilities affect one or more of:
 - acquisition,
 - organization,
 - retention,
 - understanding or
 - use of verbal or nonverbal information
 - learning disabilities are distinct from global intellectual deficiency.

Adapted from Learning Disabilities Association of Canada 2015

Learning Disability

- Learning disabilities range in severity
- Interfere with one or more of the following:
 - oral language (e.g. listening, speaking, understanding);
 - reading (e.g. decoding, phonetic knowledge, word recognition, comprehension);
 - written language (e.g. spelling and written expression);
 - mathematics (e.g. computation, problem solving).
- Learning disabilities may also involve difficulties with organizational skills, social perception, social interaction and perspective taking.

Adapted from Learning Disabilities Association of Canada 2015

Who is High Risk?

	Preterm	Term
Biologic Risk	VLBW SGA Abnormal neuroimaging or exam NICU complications (BPD/ NEC/ROP/sepsis/ A&Bs/jaundice Multiple gestation Congenital anomalies	Encephalopathy Other neurologic problems Complex medical problems Sepsis / meningitis Exchange transfusion for jaundice Multiple gestation Complex congenital anomalies
Interventions	Resuscitation BPD/ postnatal steroids/prolonged ventilation or oxygen Prolonged TPN Surgical NEC	Resuscitation CLD/ postnatal steroids/prolonged ventilation or oxygen Prolonged TPN ECMO
Social / environmental	Low maternal education Teen mother Single mother Low income Drugs/ alcohol Environmental stress	Low maternal education Teen mother Single mother Low income Drugs/ alcohol Environmental stress

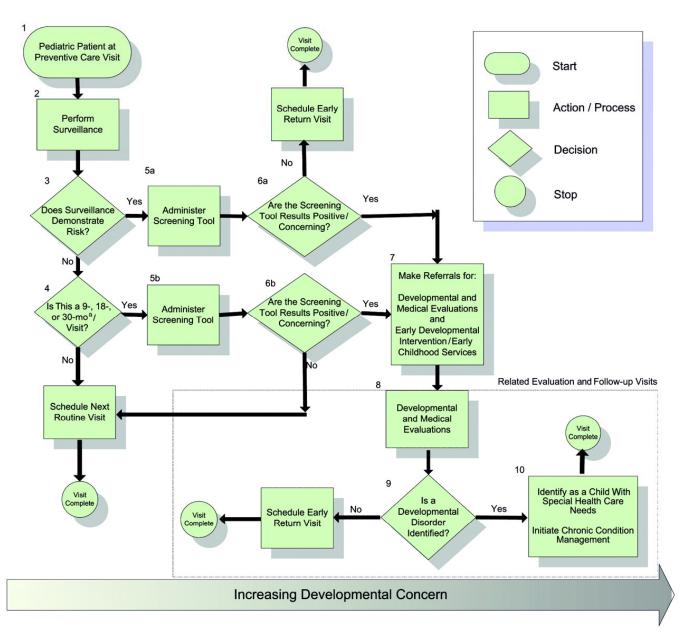
Adapted from American Academy of Pediatrics et al. Pediatrics 2004;114:1377-1397

- Workshop held in Australia, 2011 with health professionals as well as parents of high-risk children.
 - Child variables with different levels of risk:
 - Preterm:
 - High: gestational age <37 weeks;
 - Higher risk very preterm < 32 weeks;
 - Highest risk extremely preterm (<28 weeks)
 - Low birth weight:
 - High: birth weight <2500 g;
 - Higher risk very low birth weight (VLBW; <1500 g);
 - highest risk extremely low birth weight (ELBW; <1000 g).

Child variables

- Neonatal encephalopathy (including seizures),
- Term babies ventilated for >24 hours
- Congenital brain malformations, genetic syndromes or inborn errors of metabolism that affect neurodevelopmental outcomes
- Congenital heart disease
- Failed newborn hearing screening
- Neonatal central nervous system infections meningitis/encephalitis
- Infants requiring major surgery (brain, cardiac, thoracic or abdominal)
- Hyperbilirubinaemia (bilirubin >400 μmol/l or bilirubin encephalopathy)
- Neurobehavioural abnormalities noted in the newborn period.

Family/environmental variables


- High social risk (e.g., domestic violence, previous child abuse, severe poverty or homelessness)
- Substance abuse by either parent
- Major psychiatric history in either parent
- Developmental disability in either parent.

Child/parental/family viewpoint

- clinical service for families
 - -"onus on those who provide neonatal care to high-risk babies to ensure that the baby's care beyond the nursery is optimised"
 - -information, advocacy and resources

Ethical viewpoint

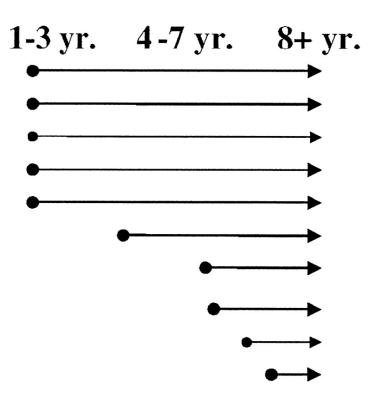
- Obligation to meet ongoing clinical needs
- Identify and appreciate long term morbidities
- Improve outcomes
- Identify a framework for follow-up
- To identify causal pathways, and in particular risk and resilience factors.

Council on Children With Disabilities et al. Pediatrics 2006;118:405-420

EDIATRICS°

- Who: All children
- When: Every well child visit
- ▶ How:
 - Parents concerns
 - Developmental history
 - Observations of development
 - Identify risk factors
 - Document

- Who:
 - Children identified through surveillance
 - High risk children
- When:
 - At standard ages
- How:
 - Formal developmental evaluation
 - Standardized testing


- Why:
 - Make a diagnosis
- Who:
 - Children identified through screening
- When:
 - After being identified by screening
- ▶ How:
 - Formal individualized developmental evaluation

Intervention

- Provide treatment to improve outcome in a diagnosed case as close to home as possible
- "Early Intervention"
 - Different definitions
 - Is it for "Defined difficulties" vs "risk factors"

Timeline – Child outcomes

- Cognition
- Executive function
- Motor control
- •Temperament, Self-Regulation
- Relationship to parent
- Behavior Problems
- Relationship to peers
- Psychopathology
- Antisocial behavior
- School failure

Follow-up Care of High Risk Infants. Pediatrics 2004;114:1377-1397

Neonatal Follow-up Program, Vancouver

GOALS

- **1. Screening** and Clinical Care
- 2. Audit
- 3. Research
- 4. Teaching
- 5. Cooperate with other programs

Follow-up Schedule

Age MD/RN OT/PT Psych Speech Audio

```
4m * *
8m * *
18m * *
3y * * * *
41/2 * *
```

Screening for Learning Abilities

- Input:
 - Hearing
 - Vision
 - Motor
 - Receptive Language
 - Behaviour
 - Social

Learning Abilities Assessment

- Understanding:
 - Cognitive development (< 3 years)
 - Intelligence (age > 3 years)
 - Verbal and non-verbal aspects

Learning Abilities Assessment

- Output
 - Executive function
 - Gross motor
 - Fine motor
 - Visual-motor functions:
 - visuomotor control,
 - visual perception
 - visuomotor integration
 - Language

Behaviours

- Child Behavior Checklist (CBCL 1.5-5 and 6-18)
 - Parent or caregiver completed Questionnaire
 - Diagnostic tool for a variety of behavioral and emotional problems (eg ADHD, oppositional defiant disorder, conduct disorder, childhood depression, separation anxiety, childhood phobia)
 - Externalizing :
 - Acting out, oppositional defiant behavior, conduct disorders, etc
 - Internalizing:
 - Anxiety, depression,etc
 - Total Scores

Attention Problems Screening

Diagnosis:

- Input from the patient, parents, and teachers.
- Standard behavioral rating scales:
 - Child Behavior Checklist
 - ADHD Rating Scale IV (ADHD-RS-IV)
 - Conners' Rating Scales age 6-18

Attention Deficit Hyperactivity Disorder

- Diagnosis and Evaluation
- Assess for comorbid conditions:
 - Oppositional defiant disorder 67%
 - Conduct disorder 46%
 - Anxiety 44%
 - Developmental coordination disorder 33%
 - Depression 32%
 - Tic disorder 8%
- Psychoeducational testing for associated learning disabilities.

Cognitive abilities

	< 3 years	3-4 yrs	School Age
Limited Assessment	BINS Ages and Stages questionnaire CAT/CLAMS	K-BIT	WASI
Comprehensive assessment	Bayley-III	WPPSI-IV DAS McCarthy Kaufman-ABC	WISC NEPSY

BINS: Bayley Infant Neurodevelopmental Screener

CAT/CLAMS: The Capute Scales K-BIT: Kaufman Brief Intelligence test

WPPSI-IV: Wechsler Preschool and Primary Scales of Intelligence

DAS: Differential Ability Scale

McCarthy Scales of Children's Abilities

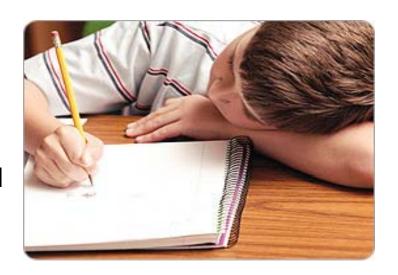
K-ABC: Kaufman Assessment Battery for Children WISC: Wechsler intelligence Scale for Children

NEPSY: A Developmental NEuroPSYchological Assessment

Adapted from:

American Academy of Pediatrics et al. Follow-ip Care of High-risk Infants Pediatrics 2004;114:1377-1397

Executive Functions (EFs)

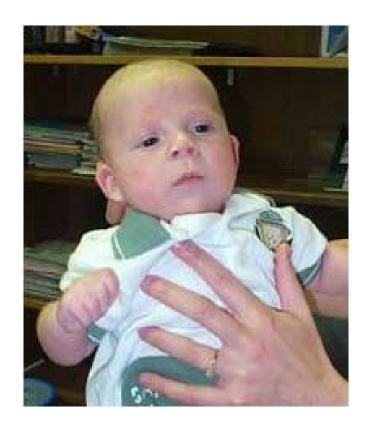

- Most definitions include notion of an 'umbrella term' for a number of higher-order processes needed for goal directed behavior (e.g. Anderson 2002; Huisinga 2006; Lehto 2003; Welsh 1991).
- Sub-components include but are not limited to:
 - Inhibition
 - Working memory
 - Planning
 - Shifting
 - Fluency

Executive Functions (EFs)

- "Cognitive control" set of neurocognitive processes that regulate behavior and cognition
- Develop most rapidly in the preschool years with evidence of adult-level performance achieved during adolescence (Anderson 2002; Zelazo 2003)
- ▶ Linked to school readiness (Blair & Peters 2003)
- Linked to academic performance (e.g. St. Clair-Thompson & Gathercole 2006)
- Critical for daily functioning and success

Developmental Test of Visual Motor Integration (VMI)

- Individually administered, paper-andpencil test of visual-motor skills
 - Child draws several basic geometric figures
 - Performance on this test involves fine motor development, perceptual discrimination skills, and the ability to integrate perceptual and motor processes
 - Involves both perceptual Input and motor Output. Poor performances on this test may be indicative of perceptual (input) difficulties, fine motor (output) difficulties, and/or problems with integrating these processes



The Beery-Buktenica Developmental Test of Visual-Motor Integration (4th Edition) (1997)

Psychoeducational Testing

- A process which utilizes standardized tests and questionnaires in an effort to identify a child's strengths and weaknesses across many areas of functioning and attributes
- These areas include but are not limited to:
 - Cognitive Development
 - Academic Achievement
 - Adaptive Functioning-
 - Visual Perception
 - Motor Coordination
 - Visual-Motor Integration
 - Behavior (e.g., Attention, Aggression, etc.)
 - Emotion (e.g., Anxiety, Depression, etc.)

Complexity of Development

Prematurity: Large Variation of Outcomes

- Recognize that across time dynamics & constituents of developmental processes
 - NOT static
 - NOT linear
- Complex interplay of biological vulnerability and psycho-social influence

Conclusions

- Learning abilities and learning disabilities involve:
 - Sensory input and Attention
 - Cognitive
 - Output
- Risk exists on a spectrum for preterm and term
 - Biologic
 - Interventions
 - Social / environmental

Conclusions

Surveillance

 Every well child visit parental concerns, history and developmental observation

Screening

 Formal developmental evaluation using standardized testing at standard ages

Evaluation

Formal individualized developmental evaluation

Conclusions

- How to screen for learning abilities
 - Multidisciplinary team at standard ages
 - Sensory input (vision and hearing)
 - Cognitive < 3 yrs and intelligence > 3 yrs
 - Behaviour and Attention
 - Output (motor and language)

Knaloney

5 years old --- 2010

Thank You...

Dr. Julie Petrie