Intestino corto desde el diagnóstico hasta el trasplante. Principales cuidados

Dra. Adriana Fernández

Servicio de Nutrición Hospital de Niños de La Plata Unidad de Rehabilitación y Trasplante Intestinal Fundación Favaloro

HTAL. NIÑOS LA PLATA

S. de Intestino Corto

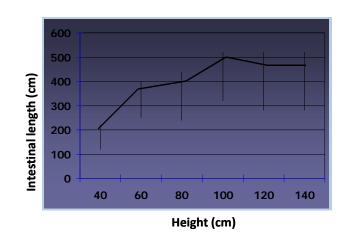
- El S. de Intestino Corto en la infancia tiene origen neonatal en la mayoría de los casos
- Patología de alta morbi-mortalididad
- Las complicaciones más severas ocurren en la etapa neonatal
- Prolongadas estadías en las Unidades de Terapia
 Neonatal
- Altos costos

Fallo Intestinal: adecuado diagnostico

• Definición:

La reducción del tracto intestinal o de su función por debajo del mínimo necesario para absorber nutrientes y fluidos para el adecuado crecimiento de niños o mantenimiento de peso en los adultos. *Goulet, 2006.*

En la practica clínica es definido en forma indirecta por el porcentaje de Nutrición Parenteral requerida.

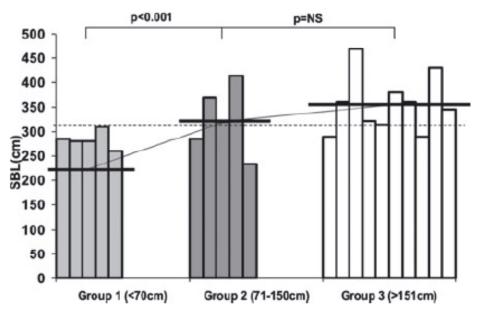

Fallo intestinal en pediatría

Etiología:

- Reducción de la superficie absortiva (SIC) (80% de los casos de fallo intestinal)
- Mucosa intacta pero ineficiente (Enteropatías congénitas)
- Mucosa intacta con extensa disfunción de la motilidad (Enf. de Hirschsprung extendida, POCI, gastrosquisis)

Síndrome de Intestino Corto

- La longitud intestinal se duplica en el último trimestre de gestación
- El rango de crecimiento máximo ocurre durante el primer año de vida


Intestino remanente

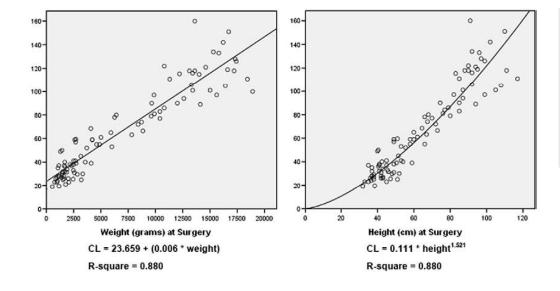
Leve 100-150 cm

Moderado 40-100 cm

Grave <40 cm

What Is the Normal Small Bowel Length in Humans? First Donor-Based Cohort Analysis

G. Gondolesi*, D. Ramisch, J. Padin, H. Almau, M. Sandi, P. B. Schelotto, A. Fernandez, C. Rumbo and H. Solar

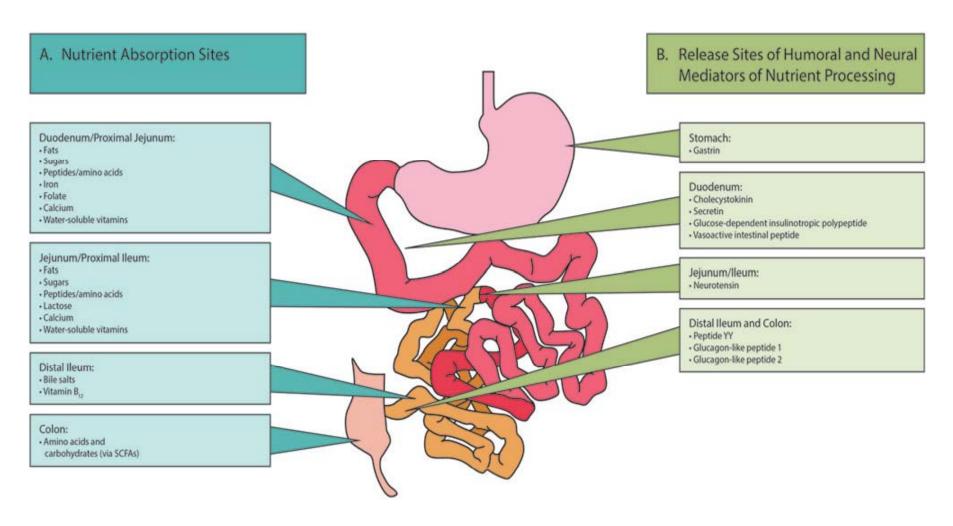

American Journal of Transplantation 2012; 12: S49-S54

Establishing norms for intestinal length in children

Marie-Chantal Struijs^{a,b}, Ivan R. Diamond^{a,b,c}, Nicole de Silva^{a,b}, Paul W. Wales^{a,b,c,*}

Journal of Pediatric Surgery (2009) 44, 933-938

Table 2 Small bowe	el length	
	Mean (cm)	SE
Postconception age		
24-26 wk	70.0	6.3
27-29 wk	100.0	6.5
30-32 wk	117.3	6.9
33-35 wk	120.8	8.8
36-38 wk	142.6	12.0
39-40 wk	157.4	11,2
Weight at surgery (g)		
500-999	83.1	9.2
1000-1499	109.9	6.6
1500-1999	120.1	4.6
2000-2999	143.6	8.0


Table 4 Colon length		
	Mean (cm)	SE
Postconception age		
24-26 wk	22.7	2.0
27-29 wk	24.4	1.2
30-32 wk	37.7	2,2
33-35 wk	27.8	1.7
36-38 wk	40.1	4.3
39-40 wk	32.7	2.1

236.5

23.8

3000-4999

S. Intestino Corto

Síndrome de Intestino Corto

Definición:

Patología caracterizada por un compromiso de la capacidad absortiva intestinal debido a la reducción de la mucosa de causa congenita o secundaria a resecciones intestinales *Wales P, 2010*

El Síndrome de Intestino Corto es una entidad funcional, no sólo una entidad anatómica

Sindrome de Intestino Corto (SIC)

Incidencia:

- No bien definida
- 1% de los neonatos hospitalizados
- 25/100000 Nacidos vivos (353.7/100000 Neonatos pretermino; 3.5/100000 termino)
- Alta morbilidad y mortalidad (37%)

Pediatrics 2008
J Pediatr Surg 2004

SIC neonatal comprende el 80% de la etiología del SIC en Pediatría

S. Intestino Corto

NEC Estados inflamatorios

Atresias intestinales Disfunción

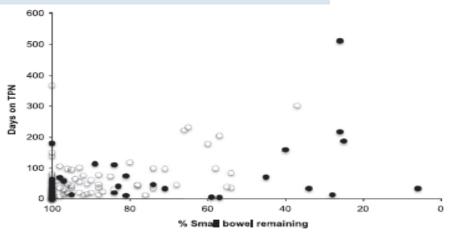


Neu, J and Walker, WA. NEJM, Jan 2011

S. Intestino Corto

Enteritis necrotizante:

Considerado como una cascada de eventos que resulta en un proceso inflamatorio prolongado en un huésped inmaduro.


S. Intestino Corto: NEC

Low birthweight, gestational age, need for surgical intervention and gram-negative bacteraemia predict intestinal failure following necrotising enterocolitis

Anders Elfvin (anders.elfvin@vgregion.se)1,2, Elsa Dinsdale1, Paul W. Wales3, Aideen M. Moore1

Acta Pædiatrica. 2015 104, pp. 771-776

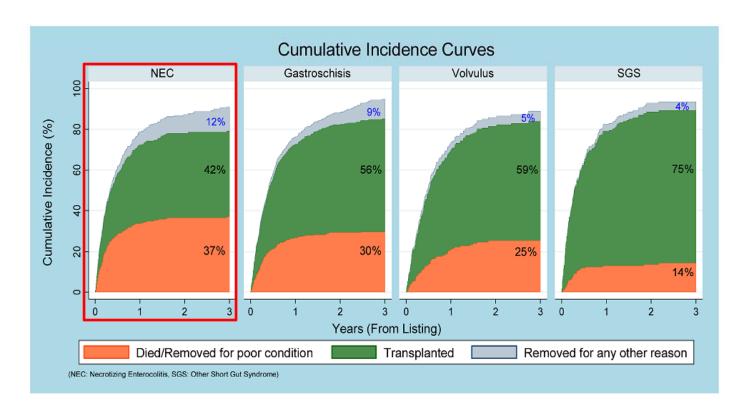

	Medical NEC n = 148 (%)	Surgical NEC n = 153 (%)	p Value	Odds Ratio [95% CI]
BW g, mean ± SD	1512 ± 797	1290 ± 712	0.01	
GA w, mean ± SD	30.6 ± 4.1	28.8 ± 4.0	0.0002	
Intestinal failure >42 days	36 (24%)	61 (49%)	0.004	2.04 [1.25, 3.35]
Intestinal failure >90 days	10 (7%)	24 (16%)	0.017	2.57 [1.18, 5.58]
Cholestasis	20 (13.5%)	51 (33.3%)	<0.001	3.12 [1.75, 5.58]
Liver failure	2 (1%)	8 (5%)	0.10	3.95 [0.28, 18.9]

Figure 2 Length of remaining small bowel after surgery and need for parenteral nutrition. Open circles represent infants who survived. Closed circles represent infants who died. (Pearson's correlation r=-0.538, p=0.01).

OUTCOMES IN CHILDREN WITH INTESTINAL FAILURE FOLLOWING LISTING FOR INTESTINAL TRANSPLANT

Oliver B. Lao, MD^{1,*}, Patrick J. Healey, MD¹, James D. Perkins, MD², Jorge D. Reyes, MD¹, and Adam B. Goldin, MD, MPH¹

SIC: Atresia intestinal

IRREVERISIBLE INTESTINAL FAILURE

 Factors predicting PN duration to be >48 months in 53 neonates with short syndrome by univariate analysis

	PN duration		
	>48 months (n = 10)	<48 months (n = 43)	Difference
Diagnosis of intestinal atresia	80%	30%	n < 0.05
Small bowel length <40 cm*	70%	32%	p < 0.05
Absence of ileoceacal valve	80%	32%	p < 0.05
Associated colon resection	80%	21%	p < 0.01
Occurrence of gram negative sepsis	70%	16%	p < 0.01
PN weaning after (months)	79 ± 25	15 ± 11	p < 0.01

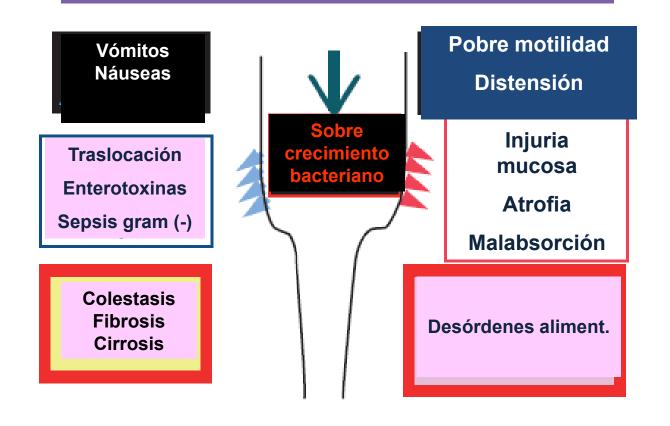
^{*} Antimesenteric small bowel length measured from the Treitz angle.

Goulet 0, 1992

Fallo Intestinal

Gastrosquisis

- Alta prevalencia en RNBP (60%)
- Atresia 10-20%
- Vólvulo 5%
- Resección Intestinal 10%
- Considerado dentro de los trastornos severos de la motilidad intestinal



Am J Perinatol. 2010 January; 27(1): 97-101.

S. Intestino Corto: disfunción intestinal

Pobre motilidad, distensión, SDBI, y nutrición enteral agresiva, producen graves alteraciones

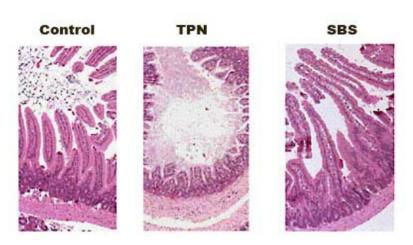
Sindrome de Intestino Corto (SIC)

Etapas de tratamiento:

Post- resección

Elevada perdida de electrolitos (bloqueadores H2, inhibidores de bomba, inhibidores de la motilidad intestinal, manejo electrolitico agresivo, NP, NE?)

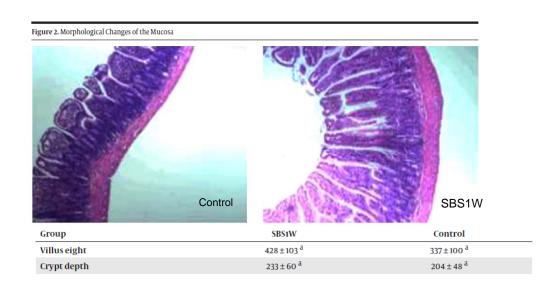
 Recuperación gradual de la absorcion intestinal

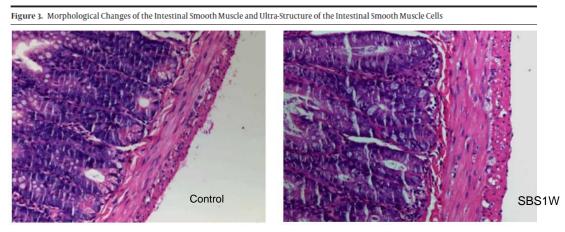

avance de la NE / prevención de las complicaciones, NP ciclica

Adaptación intestinal (suspension de la NP)
 NE, suplementación de micronutrientes, vigilancia del crecimiento

Adaptación Intestinal

- Cambios estructurales del Intestino delgado remanente
- Aumento progresivo de la absorción intestinal
- Hiperplasia de los enterocitos y miocitos
- Dilatación y crecimiento intestinal
- Aumento de los transportadores/cél.




Requiere

Presencia de nutrientes luminales Secreciones pancreaticas y biliares Hormonas intestinales (ileon)

Early Adaptation of Small Intestine After Massive Small Bowel Resection in Rats Jie Chen ¹; Zhen Qin ¹; Hongmei Shan ²; Yongtao Xiao ²; Wei Cai ^{1,2,*}

Iran J Pediatr. 2015 August; 25(4): e530.

A Review of Enteral Strategies in Infant Short Bowel Syndrome: Evidence-based or NICU Culture?

Mechanism of Action	Pharmacological Intervention	Form	Dosage ^a	Adverse effects (SBS-specific)	In fant data?	Grade b
Absorptive agents	pancreatic enzymes	Creon, Pancreaze	1000 lipase units/kg	-	No	D
	bile acid therapy	UDCA, CDCA, DCA, cholylsarcosine	15 mg/kg (UDCA)	diarrhea; hepatotoxicity after bacterial transformation (CDCA)	No °	D
Adaptative agents	GLP-2 agonist	Teduglutide	0.05-0.10 mg/kg	_	No	D
Anti-motility agents	opioid agonists	Loperamide	0.1 mg/kg (initial)	↓ pancreatic/biliary secretion; paralytic ileus	No	D
		codeine	1 mg/kg	↓ pancreatic/biliary secretion	No	D
		Lomotil	0.3-0.4 mg/kg/d (3-4 doses)	↓ pancreatic/biliary secretion	No	D
Anti-secretory agents bile acid sequestrants gastric acid suppression pancreatic/intestinal fluid suppression	bile acid sequestrants	cholestyramine, colestipol, colesevelam	240 mg/kg/d (cholestyramine)	poor palatability/GI irritation, fat-soluble vitamin deficiency	No	D
	gastric acid suppression	H ₂ blockers/PPIs	ranitidine 2-4 mg/kg (IV); 5-10 mg/kg (po); omeprazole 1 mg/kg; pantoprazole 0.5-1 mg/kd (IV)	SBBO; vitamin B12 malabsorption	Yes	D
	pancreatic/intestinal fluid suppression	octreotide	1-2 μg/kg/d (IV/SQ)	↓ pancreatic/biliary secretion; poor intestinal adaptation	Yes	D
		clonidine	0.025 mg bid	_	No	D

Falta de evidencia en los tratamientos farmacologicos del SIC; basados en la experiencia del grupo

Neonatal short bowel syndrome as a model of intestinal failure: Physiological background for enteral feeding*

Clinical Nutrition

O. Goulet ^a, J. Olieman ^b, J. Ksiazyk ^c, J. Spolidoro ^d, D. Tibboe ^e, H. Köhler ^f, R. Vural Yagci ^g, J. Falconer ^h, G. Grimble ⁱ, R.M. Beattie ^{j,*}

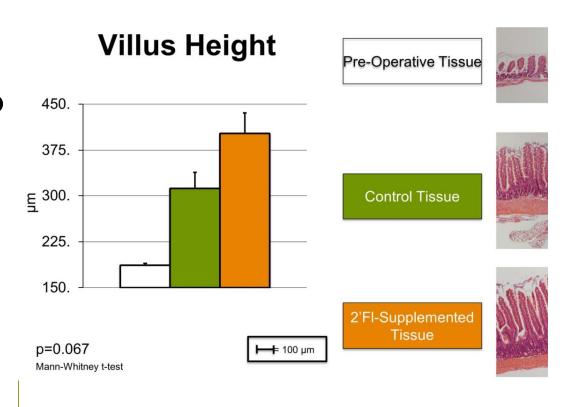
Controversias: NE continua vs. bolos

NE continua:

Aumenta el tiempo de contacto, mejora la saturación de receptores y optimiza la función de transportadores de mucosa: reduce la fase de digestión y aumenta la absorción / unidad de longitud.

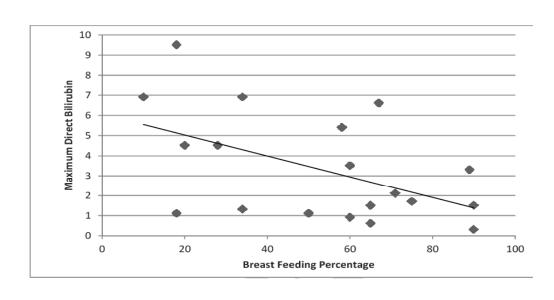
Modifica la motilidad intestinal, sin patrones de ayuno y altera el clearance bacteriano aumentando el riesgo de SDB/traslocación.

Síndrome de Intestino Corto


Leche humana

Nucleótidos
IgA
Leucocitos
Hormona de Crecimiento
EGF

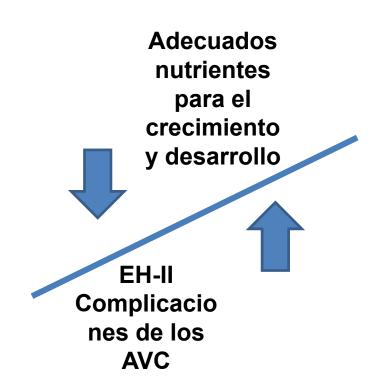
Lactosa (40% E)


2' Fucosyllactosa

- Estimula la maduración del enterocito
- Efectos prebióticos

Breast milk is better than formula milk in preventing Parenteral Nutrition Associated Liver Disease [PNALD] in infants on prolonged parenteral nutrition.

Sakil Kulkarni M.D.¹, Velma Mercado RD, LD/N², Mirta Rios RD, LD/N², Richard Arboleda M.D.³, Roberto Gomara M.D.³, William Muinos M.D.³, Jesse Reeves-Garcia M.D³, Erick Hernandez M.D.³

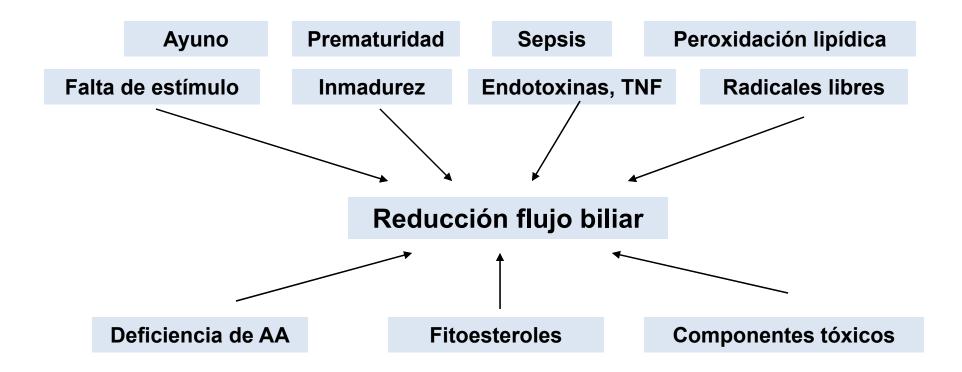

El desarrollo de EH-II fue menor (p= 0.008) en el grupo que recibió LH.

Hubo una correlación negativa significativa en relación a la Bb D (p=0.027)

Síndrome de Intestino Corto

Objetivos de cuidado

- Crecimiento y desarrollo normales
- Adecuado aporte de nutrientes
- Equilibrio hidrolectrolítico
- Prevención de infecciones
- Prevención de EH-II
- Promoción de óptima calidad de vida (oralidad NPc, NPD)


Complicaciones de los AVC

- Inadecuada colocación del ACVC
- Falta de protocolos de prevención de infecciones
- Reiterados recambios
- Infecciones asociadas al AVC
- Trombosis venosas profundas
- Contraindicación para Tx Intestinal

Enfermedad Hepática asociada a la NP-II

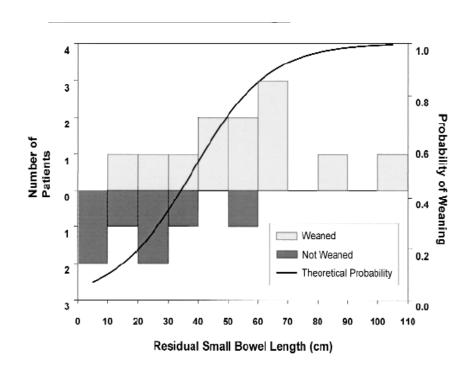
Enfermedad hepática asociada a la insuficiencia intestinal

- Inmadurez
- Sepsis temprana, NEC
- Imposibilidad de recirculación de ácidos biliares (SIC)
- Ayuno
- NP continua
- Fitosteroles

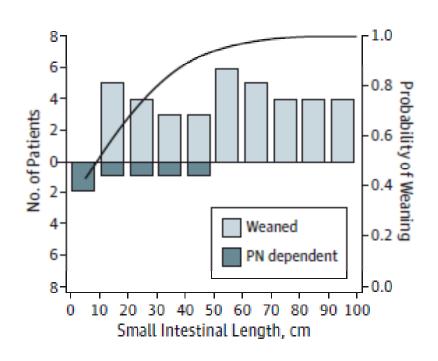
- Alimentación temprana
- Balance de nutrientes
- NP cíclica
- Balance de ácidos grasos ω-3/ω-6
- Alto aporte de αtocoferol

Injuria Hepática

Protección Hepática


S. Intestino Corto

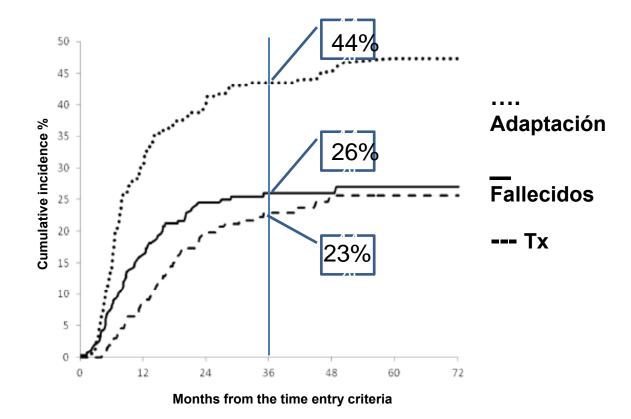
Pronóstico


- Edad de la resección
- Longitud y localización del intestino remanente
- Función de la mucosa
- Motilidad intestinal
- Capacidad de adaptación en relación a la aparición de complicaciones (EH-II, IRAVC, complicaciones sobre el Intestino remanente)

Neonates With Short Bowel Syndrome An Optimistic Future for Parenteral Nutrition Independence

JAMA Surg. 2014;149(7):663-670 Published online May 14, 2014.

Andorsky, 2001



Fallon, 2014

Natural History of Pediatric Intestinal Failure: Initial Report from the Pediatric Intestinal Failure Consortium

Robert H. Squires, MD¹, Christopher Duggan, MD², Daniel H. Teitelbaum, MD³, Paul W. Wales, MD⁴, Jane Balint, MD⁵, Robert Venick, MD⁶, Susan Rhee, MD⁷, Debra Sudan, MD⁸, David Mercer, MD⁹, J. Andres Martinez, MD¹⁰, Beth A. Carter, MD¹¹, Jason Soden, MD¹², Simon Horslen, MD¹³, Jeffrey A. Rudolph, MD¹, Samuel Kocoshis, MD¹⁴, Riccardo Superina, MD¹⁵, Sharon Lawlor, MBA¹⁶, Tamara Haller, BS¹⁶, Marcia Kurs-Lasky, MS¹⁶, and Steven H. Belle, PhD, MScHyg¹⁶, for the Pediatric Intestinal Failure Consortium*

272p.
EG 34 s
PN 2.1 kg
LIR:144 pts. 41 cm
EN 26%, atresia 27%,
volvulos 24%

Outcome of Pediatric Short Bowel Syndrome

Followed in an Intestinal Rehabilitation Center in Argentina

María Martinez, Marcela Fabeiro, Dalieri Marcela, Marina Prozzi, Patricia Barcellandi, Molina Jorge, María Julia Alberti, Adriana Fernandez

183 pacientes
LIR< 80 cm, x 31 cm
Centro de Rehabilitacion Intestinal
Hospital de Ninos La Plata, Argentina
(1985-2014)

 Adaptacion 606 ±805 dias,

LIR A 47±18 cm vs. NA 23 ±19 cm LIR > 40 cm OR 7.3, p <0.001 ICV+ OR 8.28, p <0.001 Colon+ OR 6, p<0.001 Sobrevida (Kaplan Meier)

1 ano 91%

2 anos 75%

5 anos 72%

< LIR se relaciono con fallecimiento

26 ±22 cm vs. 37 ±21 cm sobrevivientes

Fallo Intestinal

Cuidadores primarios


Programas de FI

Hospital Niños de La Plata/63p

- Tiempo FI 0.66 y (r 0.05-5)
- Colestasis 34 pacientes (54%) D Bb x 5.29 ± 2.35 mg/dl
- Trombosis 16 pacientes (25%)

Nutr Hosp. 2011;26(1):239-242 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318

Fallo Intestinal: Trabajo en red

Servicio de Nutrición y Dietoterapia
Hospital de Niños de La Plata
ARGENTINA