

Growth in early years: statistical and clinical insights

Tim Cole

Population, Policy and Practice Programme UCL Great Ormond Street Institute of Child Health London WC1N 1EH UK

Child growth

 Growth is the unique paediatric indicator of well-being, which can monitor a child for endocrine, nutritional, emotional and physical health

Ian Jefferson

How to assess growth

- Measure child
- Plot on growth chart
- Read growth chart
- Take action

Centiles and centile crossing

What is a centile?

- Centile percentage point of the frequency distribution
 - Cut-off identifies that percentage of children with measurements below it
- Examples
 - 50% of children lie below 50th centile (median)
 - 25% of children lie below 25th centile
 - 99.6% of children lie below 99.6th centile (0.4% above)
- The cut-offs vary by age, so the centiles appear as curves on the growth chart

Growth distance and velocity

- Growth chart is "road to health"
 - Current size (i.e. centile) indicates *distance* travelled
 - Centile crossing indicates *velocity* of travel
- Growth chart quantifies size/distance
 - Centile
- Growth chart *does not* quantify growth velocity
 - Centile *crossing* is uncalibrated
- Ironic growth chart does not measure growth...

A new concept: growth acceleration

- Growth distance
 - One measurement
 - Centile
- Growth velocity
 - Two measurements
 - Centile crossing
- Growth acceleration
 - Three measurements
 - Change in centile crossing

Distance - one measurement

Velocity – two measurements

Acceleration – three measurements

Growth pattern – many measurements

Growth pattern – many measurements

- Modelling growth curves with SITAR
- Provides simple summary of individual growth patterns

Aims

- To show how statistics helps chart assessment for:
 - 1. Growth distance
 - 2. Growth velocity
 - 3. Growth acceleration
 - 4. Growth pattern

Growth distance

One measurement

Constructing growth charts

- Growth charts designed to assess single measurements
- Compare measurement to distribution of reference measurements for age and sex
- LMS method popular way to construct growth charts
- Worked example for weight in girls

Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992;11:1305-19.

Constructing growth charts

- Weight in 4000 girls
- Age 1-21 years
- Aim: to define weight distribution at each age

- 95% below 95th centile
- 50% below 50th centile
- 5% below 5th centile
- etc

Constructing growth charts

- Weight in 4000 girls
- Age 1-21 years
- Aim: to define weight distribution at each age
- Construct smooth centile curves
 - 50% below 50th centile
 - 3% below 3rd centile
 - 97% below 97th centile
 - etc

LMS method

- Cole, JRSS A (1988)
- Split into narrow age groups
- Summarise distribution in each group
 - Need to adjust for skewness
 - Raise weight to Box-Cox power λ
 - Calculate mean μ and coefficient of variation σ
- So $\lambda \mu$ and σ vary by age

LMS method

- Plot λ μ and σ against age and fit smooth curves
 - L curve for Box-Cox power λ
 - M curve for median µ
 - S curve for coeff of variation σ
- Hence LMS method

LMS method

- Centile curves are functions of L M and S curves
 - Centile_{100 $\alpha} = M(1 + LSz_{\alpha})^{1/L}$}
- So if L M and S curves are smooth, centiles are too

Cole-Green LMS method

 Peter Green (1988) proposed using maximum penalized likelihood to improve LMS method

$$\sum_{i=1}^{n} \left(L(t_i) \log \left[\frac{y_i}{M(t_i)} \right] - \log S(t_i) - \frac{1}{2} \left\{ \frac{[y_i/M(t_i)]^{L(t_i)} - 1}{L(t_i)S(t_i)} \right\}^2 \right) - \frac{1}{2} \alpha_L \int [L''(t)]^2 dt - \frac{1}{2} \alpha_M \int [M''(t)]^2 dt - \frac{1}{2} \alpha_M \int [M''(t)]^2 dt$$

- Elegantly avoids arbitrary age groupings
- See Cole & Green, Stat Med (1992)
- Now the standard method

Peter Green FRS

40 countries use LMS method

Growth velocity

Two measurements

Growth velocity

- Velocity appears as centile crossing on chart
- Two problems with chart centiles
 - They assess distance not velocity
 - Light babies grow faster, heavy babies slower
 - Regression to the mean
 - So velocity depends on starting weight
- Only experience can tell if centile crossing is abnormal
- Need a way to flag abnormal centile crossing on chart

Velocity and centile crossing

- Show line on chart whose slope corresponds to 5th velocity centile over 4 weeks
- Depends on age and initial centile

Centile crossing over 4 weeks

Statistics of centile crossing

- Two weights 4 weeks apart
- Convert to z-scores z_1 and z_2
- Expected mean of z₂ is r.z₁
 - where r is correlation between z-scores
- SD of z_2 is $\sqrt{1-r^2}$
- So 5^{th} centile for z_2 is
 - $z_2 = Mean 1.64 \text{ SD} = r.z_1 1.64\sqrt{1-r^2}$
- So z_2 depends on z_1 and r

Thrive lines for growth velocity

- For ages 0-4, 4-8, 8-12 ... weeks
 - calculate correlations r_{0-4} , r_{4-8} , r_{8-12} etc
- Choose baseline value z₀
- Then using formula
 - $z_0 > z_4 > z_8 > z_{12} \dots$ defines a curve
- Call the curve a *thrive line* as it defines failure to thrive

Cole TJ. Presenting information on growth distance and conditional velocity in one chart: practical issues of chart design. Stat Med 1998;17:2697-707.

Thrive line overlay - 5th centile weight gain

Thrive lines

- Thrive lines assess weight velocity
 - 5th velocity centile
 - Over a 4-week period
- A child's plot that tracks along the thrive lines for 4 weeks is growing on the 5th velocity centile
- Tracking for longer is worse:
 - e.g. for 8 weeks, growth < 1st velocity centile
- Thrive lines presented as plastic overlay to superimpose on chart

Mild centile crossing - 1 channel width over 8 weeks

Weight gain above 5th centile

Weight gain above 5th centile

Moderate centile crossing - 2 channel widths over 8 weeks

Weight gain below 5th centile

Weight gain below 5th centile

Thrive 95 lines

- Rapid infant weight gain also a concern
- Useful to identify rapid weight gain
- Hence "Thrive 95 lines"
- Define 95th centile for weight gain

Thrive 95 lines

Thrive 5 and Thrive 95 lines

5th centile weight gain

95th centile weight gain

Benefit of thrive lines

- Plastic overlay designed to fit on British 1990 chart format
- Distance and velocity both assessed yet data plotted just once
 - No need for separate distance and velocity charts
- Useful addition to weight chart

Thrive lines and electronic charts

- Now easy to add thrive lines to electronic charts
- Thrive lines can be drawn for any required velocity centile, e.g. 1st or 99th
- Switch between distance and velocity centiles

Distance centiles

Velocity centiles

Growth acceleration

Three measurements

Question

- You observe an infant grow over 4 weeks
 - They show upward or downward centile crossing
- Ask yourself:
 - "How will they grow over the next 4 weeks?"
- Will they stay on the same centile?
- Will they continue to cross centiles the same way?
- Or will they cross centiles the other way?

Centile crossing over 4 weeks

[•]UCL

Statistics of centile crossing and deviation

- As before, convert weights to z-scores
- The change in z-score over 4 weeks is *deviation*
 - e.g. from birth to 4 weeks: Deviation = $z_4 z_0 = d_{04}$
- *Deviation* the same as *centile crossing*
- Research question: What is the correlation between successive deviations?
 - e.g. correlation between d_{04} and d_{48}
- Possible answers: zero, positive or negative

[•]UCL

Two growth studies of Cambridge infants

- Widdowson Study (1959-65)
 - 1094 infants measured monthly from 0-12 months
 - Representative of Cambridge infants in ~1960
 - Weights obtained from child welfare clinics
- Cambridge Infant Growth Study (1984-87)
 - 255 infants measured every 4 weeks from 0-52 weeks
 - Families more selected and of higher social class
 - Infants weighed by experienced research nurse
- In brief, monthly weights in infancy

Correlation between successive deviations

Age 3-4 months positive correlation

Correlation between successive deviations

Age 10-11 months negative correlation

Surprise - deviations are correlated!

- At 3-4 months there is a positive correlation
 - Infants crossing centiles one month are likely to cross centiles in the same direction the next month
- At 10-11 months there is a negative correlation
 - Infants crossing centiles are likely to cross centiles in the opposite direction the next month

Cole TJ, Singhal A, Fewtrell MS, et al. Weight centile crossing in infancy: correlations between successive months show evidence of growth feedback and an infant-child growth transition. Am J Clin Nutr 2016;104:1101-9.

How does the correlation change with age?

age (months)

Deviation and feedback

- Before 6 months infants crossing centiles tend to continue to cross centiles
- After 6 months they tend to cross back again
- Examples of feedback
 - Positive feedback before 6 months
 - Negative feedback after 6 months

Positive feedback

- Before 6 months, some young infants want to shift to a different centile
 - Mismatch between fetal growth and target size?
- So need to cross centiles in same direction for a time
 - But eventually reach their target
- Example of positive feedback

Negative feedback

- Older infants depart from growth trajectory due to some exposure
 - e.g. infection leads to downward centile crossing
- Response is to compensate the following month
 - e.g. catch-up following infection
- Example of negative feedback

Implications for chart assessment

- Centile crossing predicts centile crossing
 - But depends on age
- Early centile crossing (before 6 months)
 - Expect more centile crossing
- Late centile crossing (after 6 months)
 - Expect reverse centile crossing
- Mid-age centile crossing
 - Expect centile tracking
- Easiest to see on weight z-score scale

Growth velocity and growth assessment

Growth acceleration and feedback

- Assessment of acceleration a novel idea
- Highlights change from positive to negative feedback
- Reflects how and why centile crossing becomes less common with increasing age in infancy

Growth pattern

Many measurements

Variation in growth pattern

- Interesting to look at individual growth curves
 - To see how they differ, and how they are the same
- Here are a sample of growth curves from the Cambridge Infant Growth Study

Summarising growth pattern

- Curves largely the same shape
 - But differing in position
 - Some high, some low
 - Some steep, some shallow
- SITAR is a growth curve model
- that adjusts each curve for being
 - high/low (size)
 - early/late (timing)
 - steep/shallow (intensity)

All growth curves, colour-coded measured every 4 weeks

age (weeks)

SITAR

- SITAR adjustment makes all curves like the mean curve
 - High curves shifted down, low curves up (size)
 - Steep curves made shallower, shallow steeper (intensity)
 - Early curves shifted later, late curves earlier (timing)
 - Size, timing and intensity estimated as random effects
- Net effect is to *superimpose* curves
- Then fit mean curve through superimposed curves

All growth curves, colour-coded measured every 4 weeks

age (weeks)

All growth curves, colour-coded after SITAR adjustment

age (weeks)

All growth curves, colour-coded with SITAR mean curve

age (weeks)

SITAR growth patterns

- SITAR converts growth curves:
 - to a mean curve:

- and a growth pattern for each individual:
 - size, timing, intensity
- Summary like growth distance or growth velocity

SITAR - a useful instrument for growth curve analysis. Cole TJ, Donaldson MD, Ben-Shlomo Y. Int J Epidemiol 2010;39:1558-66.

SITAR growth patterns

- SITAR explains over 95% of variance
 - Very good fit
 - So random effects define individual growth pattern
 - Can be used as individual growth summary
 - To relate to earlier exposures or later life course
- BUT note that SITAR not useful clinically
 - It needs whole growth curve
 - Comes too late to make clinical decisions

Conclusions

- Growth summary for one, two, three and many measurements
 - Distance, velocity, acceleration and pattern
- Useful to assess growth in individuals
 - Improving decision making
- Shows how statistics can help in the assessment of growth