

Problemas frecuentes del medio interno y su manejo clínico: Acidosis metabólica

Dra. Alejandra Caminiti
Nefropediatra
Rosario

Paciente de 5 meses de vida con diagnóstico de Síndrome de Down, sin cardiopatía estructural y sin otros factores de riesgo. Medicación habitual: sulfato ferroso y Vitaminas ADC.

Es traído a la Guardia por cuadro de 48 horas de evolución caracterizado por deposiciones diarreicas líquidas, fiebre y decaimiento.

Al examen físico presentaba regular estado general:

- ✓ Afebril, sin signos de toxinfección sistémica.
- ✓ Taquicardia (FC 140 l x′). Relleno capilar enlentecido > 3″. Pulsos periféricos débiles.
- ✓ Taquipneico (FR 45 x'). Mala mecánica respiratoria. Sin signos de bronco-obstrucción.
- ✓ Llanto débil y sin lágrimas.
- ✓ Sensorio alternante.
- ✓ Mucosas semihúmedas. Signo del pliegue +.
- ✓ Diuresis positiva, de escaso volumen.
- ✓ Palidez (tinte terroso).

RESULTADOS DE LABORATORIO:

- •Glucemia 75 mg/dl
- •Urea 100 mg/dl; Creatinina 0.8 mg/dl.
- •EAB: PH 7.25/pCO2 29/CO3H 13/ EB -10.3
- •lonograma Na+130/ K+3.2/ Cl-105 (mEq/L).
- •Albúmina 3 gr/dl.

¿Cuál es el trastorno ácido base primario presentado por el paciente?.... EAB: PH 7.25/pCO2 29/CO3H 13/ EB -10.3

- A- acidosis metabólica con acidemia
- B- acidosis metabólica con alcalemia
- C- alcalosis metabólica con acidemia
- D-alcalosis metabólica con alcalemia
- E- acidosis metabólica compensada

¿Cuál es el trastorno ácido base primario presentado por el paciente?.... EAB: PH 7.25/pCO2 29/CO3H 13/EB -10.3

- A- acidosis metabólica con acidemia
- B- acidosis metabólica con alcalemia
- C- alcalosis metabólica con acidemia
- D-alcalosis metabólica con alcalemia
- E- acidosis metabólica compensada

Interpretación del EAB: cuál de las afirmaciones es correcta?

- A- existe coherencia interna y la compensación respiratoria es adecuada
- B- no existe coherencia interna y la compensación respiratoria es adecuada
- C- existe coherencia interna y la compensación respiratoria no es adecuada
- D- existe coherencia interna y no hay se puede definir la compensación respiratoria
- E- no existe compensación respiratoria

Interpretación del EAB: cual de las afirmaciones es correcta

- A- existe coherencia interna y la compensación respiratoria es adecuada
- B- no existe coherencia interna y la compensación respiratoria es adecuada
- C- existe coherencia interna y la compensación respiratoria no es adecuada
- D- existe coherencia interna y no hay se puede definir la compensación respiratoria
- E- No existe compensación respiratoria

Análisis de los resultados de laboratorio

ál es el trastorno ácido base primario presentado por el paciente?....

: PH 7.25/pCO2 29/HCO3 13/ EB -10.3

Acidosis metabólica con acidemia

ste coherencia interna?

Desde la ecuación H.H surge
$$H = 800 \times CO2 \text{ disuelto}$$

$$HCO3$$

$$H = 800 \times 0.03 \times \text{p CO2} = 24 \times \text{pCO2} \qquad (24 \times 29) = 53$$

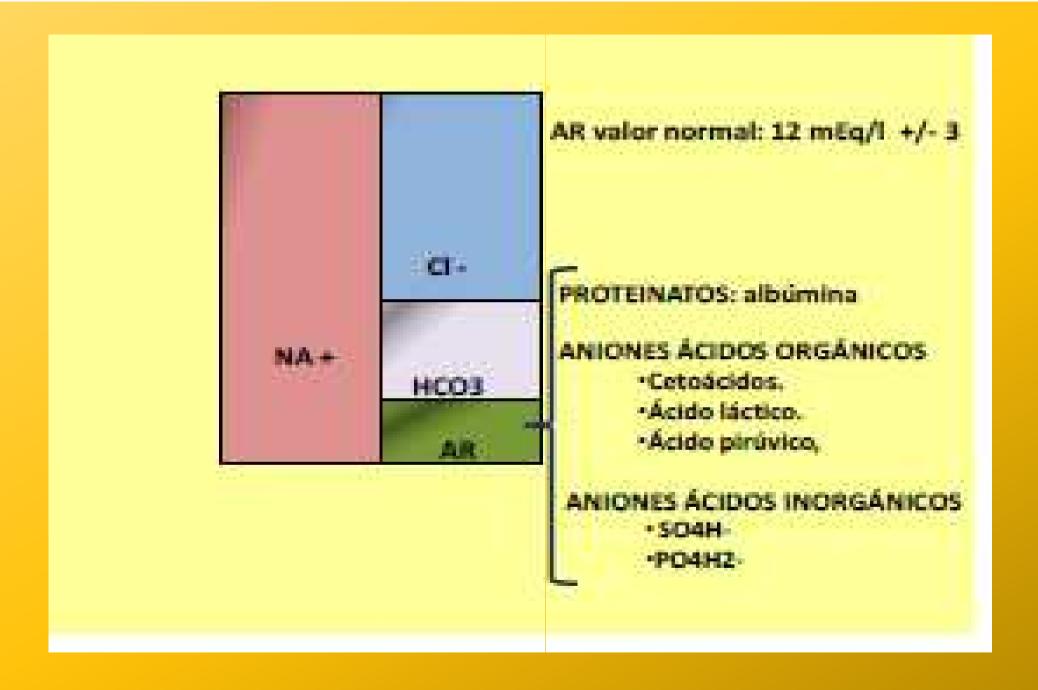
$$HCO3 \qquad HCO3 \qquad 13$$

or tabla ph 7.25 corresponde a concentración de H de **56**, por lo tanto existe coherencia cerna. ó

r la regla de 0.8 en donde si 7.00=100 por cada aumento de 0.10 multiplicar 0.8

lo de compensación

cada punto de HCO3 que desciende la CO2 debe bajar 1-1.5


13x1,5+8= 27.5 Coincide con la pCO2 de 29

Sobre el calculo del anión restante, marque lo correcto

- A- el anión restante es alto y sugiere intoxicación folclórica
- B- el delta anión restante es menor a 5 por lo que se considera que el anión restante es normal
- C- el anión restante es alto y el delta es mayor a 5 (que surge de la normalización por PH y albúmina.
- D- el anión restante no permite arribar conclusiones sobre la causa de la acidosis en este paciente
- E- no es posible calcular el anión restante porque faltan datos

Sobre el calculo del anión restante, marque lo correcto

- A- el anión restante es alto y sugiere intoxicación folclórica
- B- el delta anión restante es menor a 5 por lo que se considera que el anión restante es normal
- C- el anión restante es alto y el delta es mayor a 5 (que surge de la normalización por PH y albúmina.
- D- el anión restante no permite arribar conclusiones sobre la causa de la acidosis en este paciente
- E- no es posible calcular el anión restante porque faltan datos

Calcular el anión restante(AR)nión restante= Na - (CI+Bic)

$$130 - (105 + 13) = 12 AR$$

El AR normalizado (por albúmina y por Ph)

AR de **12** le resto 2 ptos. por el descenso de la albúmina (1g que desciende baja 2 -2.5 el AR) 2 puntos más por el descenso del Ph.(cada 01 que desciende el Ph, baja 1 el AR)

Resultando un AR normalizado de 8

El **delta AR** es la diferencia entre el **AR del paciente y el normalizado** es de **4** y deber ser meno para considerar que no hay ganancia de ácidos

¿CUÁL CONSIDERA QUE ES LA CAUSA MÁS PROBABLE DEL TRASTORNO ÁCIDO-BASE QUE PRESENTA EL PACIENTE?

La causa más probable es por pérdidas gastrointestinales (pérdida de bases)

Cuál sería el tratamiento mas apropiado?

- A- corrección rápida con bicarbonato 1/6 molar
- B- corrección lenta ya que se trata de una paciente con cardiopatía congénita
- C- rehidratación, expansión (por signos de shock) y luego plan e.v hasta garantizar la vía oral
- D- corrección con bicarbonato vía oral lento en 24hs
- E- corrección con mezcla con bicarbonato

Cuál seria el tratamiento mas apropiado?

- A- corrección rápida con bicarbonato 1/6 molar
- B- corrección lenta ya que se trata de una paciente con cardiopatía congénita
- C- rehidratación, expansión (por signos de shock) y luego plan e.v hasta garantizar la vía oral
- D- corrección con bicarbonato vía oral lento en 24hs
- E- corrección con mezcla con bicarbonato

MANEJO TERAPEUTICO

- El paciente se encuentra deshidratado moderado, taquicárdico, taquipneico, pulsos débiles y relleno ungueal enlentecido (signos de shock hipovolémico), por lo cual requiere reposición rápida de líquidos. Expansión rápida con solución fisiológica a 20ml/kg hasta lograr buena perfusión.
- Recuperar la volemia permite al riñón generar las bases necesarias para restablecer el medio interno .
- Tener en cuenta que si la diarrea persiste puede no ser suficiente la compensación renal, en esos casos es coherente el aporte para reponer las pérdidas.

En qué se ven influenciados los electrolitos cuando estamos frente a una alteración del EAB? Indicar la respuesta correcta

- A- el calcio y el potasio no descienden al corregir la acidosis
- B- los niveles de cloremia permiten distinguir se estamos frente a acidosis por ganancia de ácidos o por pérdida de los mismos
- C- el gap plasmático modifica valor de la albúmina y por tanto debe calcularse siempre antes de calcular el calcio corregido
- D- los niveles de potasio y calcio no se ven modificados al corregir la acidosis
- E- el calcio corregido no se altera con la corrección de la acidosis ya que no fue generada mediante el aporte de bicarbonato

En que se ven influidos los electrolitos cuando estamos frente a una alteración del EAB? Indicar la respuesta correcta

- A- el calcio y el potasio no descienden al corregir la acidosis
- B- los niveles de cloremia permiten distinguir se estamos frente a acidosis por ganancia de ácidos o por pérdida de los mismos
- C- el gap plasmático modifica valor de la albúmina y por tanto debe calcularse siempre antes de calcular el calcio corregido
- D- los niveles de potasio y calcio no se ven modificados al corregir la acidosis
- E- el calcio corregido no se altera con la corrección de la acidosis ya que no fue generada mediante el aporte de bicarbonato

MO PUEDE INFLUIR LA ALBUMINA EN EL RESULTADO DEL MEDIO INTERN

albúmina baja puede modificar el calcio (calcular calcio corregido) y dismir el gap esperado.

$$Ca++ corregido (mg/dl) = Ca++ total (mg/dl) + [0.8 x (4 - alb. g/dl)].$$

Ca - Alb + 4

UÉ CONSIDERACIONES PODRÍA BRINDAR SOBRE EL VALOR DEL POTASIO?

Al corregir la acidosis a medida que el paciente alcance la normohidratación es esperable que el potasio continúe descendiendo

ya que la acidosis moviliza el K+ al interior de la célula y aumenta la excreci enal del mismo por orina). Por lo cual se debe controlar el ionograma y rea in adecuado aporte del mismo. (por cada 0.1descenso de Ph el K+ sale de l élula en un valor de 0.7)

BEMOS CALCULAR EL DELTA CLORO

te es , el Cl esperado por la natremia del paciente (75% de la natremia)

Caso clínico 2

- Paciente de 12 años portadora de mielomeningocele operado, vesicostomizada a los 4 años de edad. Antecedente de infecciones urinarias recurrentes, reflujo de alto grado. Consulta por dolor abdominal de 48hs de evolución agregando dificultad respiratoria.
- Al examen físico, pálida, polipneica, normohidrata, puño percusión positiva izquierda

<u>Laboratorio</u>

```
Hcto 36 Hb 11.7 GB 6.800 PCR 344
Ur 235mg% creat 6.8mg%
Na+ 130 K+ 4.9 Cl- 91 (mEq/l)
EAB 7.16/-18.3/8.5 hco3/24.2 CO2
Ca++ 6.7mg% P+5.7mg% Mg+ 2.2mg%
Prot 7.1mg% Alb 3.1mg% Acido úrico 9mg%
```

Analicemos repasando lo visto en el caso anterior

- Se trata de una ACIDOSIS METABOLICA CON ACIDEMIA
- En relación a la coherencia interna es COHERENTE:

```
<u>24XpCO2</u> = 78 (en la tabla 80)
HCO3
```

- El GAP es de 35.4 normalizado por alb y por PH 7 y el delta AR es de 28 (VN menor de 5) GANANCIA de ACIDOS (balance positivos de ácidos fijos, disminución de la excreción renal de ácidos fijos)
- La compensación respiratoria es apropiada por lo tanto en un trastorno metabólico puro

pCO2 esperada = 1.5 x HCO3 +8 +/- 2= 20 /tenia 24

Habiendo interpretado el EAB, responda cuál es el tratamiento mas adecuado?

- A- Hidrata a la paciente, porque al mejorara la perfusión renal elaborará bicarbonato
- B- Trata la infección porque la acidosis esta sobredimensionada por esta causa
- C- Aporta bicarbonato en forma lenta
- D- Trata la infección y aporta bicarbonato en forma lenta por ser una paciente renal crónica.
- E- Aporta bicarbonato en forma rápida con solución de bicarbonato al 1/6 molar, trata la infección para contrarrestar la acidosis dada por este componente

Habiendo interpretado el EAB, responda cuál es el tratamiento mas adecuado?

- A- Hidrata a la paciente, porque al mejorara la perfusión renal elaborará bicarbonato
- B- Trata la infección porque la acidosis esta sobredimensionada por esta causa
- C- Aporta bicarbonato en forma lenta
- D- Trata la infección y aporta bicarbonato en forma lenta por ser una paciente renal crónica.
- E- Aporta bicarbonato en forma rápida con solución de bicarbonato al 1/6 molar, trata la infección para contrarrestar la acidosis dada por este componente

TRATAMIENTO

EL TRATAMIENTO DEBE DIRIGIRSE FUNDA A LA CORRECCIÓN DE LA CAUSA.

La corrección rápida SOLO RESERVA

En los casos AGUDOS GRAVES se corre

También puede indicarse aporte a 0.5 a 1 mEq/kg de peso corporal, corrigiendo la causa, garantizando la perfusión

• La solución debe diluirse al 1/6 molar en DX 5% o agua destilada (ml = mEq de HCO3 x 5) ya que la osmolaridad del HCO3- 1 molar es de 2000 mosmol/l y al diluirse ésta disminuye a 333 mosmol/l.

Efectos adversos de la administración de HCO3

Hipervolemia, hipernatremia, hipercapnia (en niños con hipoventilación o en casos de disminución del gasto cardiaco y flujo pulmonar), hipopotasemia, sobrecorrección del pH, mayor riesgo de edema cerebral, hipoxia tisular potencial y aumento del riesgo de hemorragia intraventricular postnatal.

La corrección lenta o sostenida

Se realiza con la fórmula que aplica el Agua Corporal Total (ACT).

mEq HCO3 = HCO3deseado - HCO3 observados x ACT

ACT en < de 6 meses = peso x 0,7

ACT en > de 6 meses = peso x 0,6

• Se puede administrar de 2 formas

*vía parenteral : se agrega al plan de 24 horas (esto cuando está contraindicado la vía oral)

*vía oral :con sellos de bicarbonato de sodio 1 gramo=12mEq de bicarbonato de sodio.

Cuánto y cómo?

- Cuánto debemos corregir?
- Sólo hasta 7,20 para prevenir sobrecorrección especialmente en la cetoacidosis diabética y la acidosis láctica.
- Cuál sería el nivel óptimo de bicarbonatemia?
- En acidosis con anión **GAP normal** (hiperclorémica): **15 -18meq/l** de COH3 *porque* requiere mucho tiempo la regeneración renal de bicarbonato
- En las acidosis con **GAP elevado: 12meq/l** porque al mejorar la causa o eliminar el tóxico el hígado y riñón regeneran rápido el bicarbonato titulado
- El tratamiento con bicarbonato de sodio está contraindicado en :
 - * hipernatremia e hiperosmolaridad.
 - *acidosis respiratoria

Conclusión

- En los desórdenes del EAB es necesario en primer lugar la interpretación del mismo, coherencia interna y compensación respiratoria
- Calcular la brecha anionica para evaluar el origen de la acidosis
- Definir si se trata de un trastorno metabólico, respiratorio o mixto
- Evaluar los electrolitos para evitar desórdenes de los mismos al corregir la acidosis
- Ser cauteloso con la corrección, teniendo la certeza que en muchas ocasiones, esta se logra corrigiendo la causa.

MUCHAS

GRACIAS

