"Genética e Hígado: Cómo contribuye la genética en el algoritmo diagnóstico de la enfermedad hepática pediátrica?"

Nicholas Ah Mew, MD April 24, 2017

> SAP 2017 Buenos Aires

'Genetic disorders are rare – why do I need to consider them?'

- 30-50% of liver disease in children < 5y were due to a genetic etiology
- The younger the patient, the more likely a genetic etiology
- Focus on metabolic disorders for which treatments are available
 - Disorders of intermediary metabolism
 - All are autosomal recessive disorders

Categories of metabolic liver disease

- Hepatocellular dysfunction
- Hepatosplenomegaly
- Cholestasis
- Recurrent Hypoglycemia

Categories of metabolic liver disease

- Hepatocellular dysfunction
- Hepatosplenomegaly
- Cholestasis
- Recurrent Hypoglycemia

Hepatocellular dysfunction

- Galactosemia
- Tyrosinemia
- Urea cycle disorders
- Mitochondrial DNA depletion syndromes
- Valproate induced liver disease
- Bile acid synthetic disorders
- Mevalonic aciduria
- Wilson's disease

King's college study (2005-2015)

36 of 127 with acute liver failure had metabolic cause:

- Galactosemia: 17
- Mitochondrial disorder: 7
- Urea cycle disorder: 4
- Tyrosinemia type I: 4
- Niemann-Pick disease type C: 3
- Disorder of glycosylation: 1

Galactose metabolism – the Leloir pathway

<u>Gal</u>actose-1-Phosphate Uridyl<u>T</u>ransferase

Galactosemia - Clinical features

- Failure to thrive
- Liver dysfunction
- Jaundice (unconjugated conjugated)
- E-coli sepsis
- Learning difficulties
- Primary ovarian insufficiency

Galactosemia - Diagnosis

- Urine reducing substances
 - Identifies excess sugars in urine
 - If no glycosuria, suggestive of Galactosemia
- Diagnostic testing:
 - — Erythrocyte GALT enzyme activity <10-15% activity

 - Terythrocyte Galactose-1-Phosphate
- DNA sequencing
- Pitfalls of newborn screening:
 - False positives in summer: GALT is a heat-sensitive enzyme
 - Duarte variant: ~25% of enzyme activity

Galactosemia - Case presentation

- 1 month-old boy, missed newborn screen
 - AST: 292 U/L (3-34)
 - ALT: 115 U/L (15-41)
 - INR: 2.8 (0.8-1.2)
 - PTT: 55 (23-36)
 - Total Bilirubin: 9 mg/dl (0.2-1.3)
 - Direct Bilirubin: 5 mg/dl(<0.3)
- Liver transplant
 - Does not completely correct blood galactose levels

Galactosemia - Management

- Avoidance of dietary galactose
 - Avoid lactose
 - Avoid breastmilk AND milk-based formulas
- Annual ophthalmologic exam

Tyrosinemia type I (Hepatorenal tyrosinemia)

Tyrosinemia Type I - Pathophysiology

- Deficiency of Fumarylacetoacetase
- Tumarylacetoacetate (FAA), Maleylacetoacetate (MAA), Succinylacetone (SA)
 - Disrupt glutathione metabolism
 - Alkylating agents

Tyrosinemia Type I – Clinical Features

- 'Hepatorenal tyrosinemia'
- Acute liver failure
 - Liver synthetic function first/most affected
- Cirrhosis, Hepatocellular Carcinoma
- Renal: Proximal Tubular Disease
 - Renal Tubular Acidosis, Fanconi, glycosuria
 - Hypophosphatemic rickets

Tyrosinemia Type I Diagnostic tests

- Plasma amino acids
 - Marked and <u>disproportionately</u> elevated tyrosine
- Urine succinylacetone present
 - Differentiates from other tyrosinemias and transient newborn tyrosinemia
- DNA sequencing

Tyrosinemia Type I - Case presentation

6 week-old girl, newborn screening for tyrosinemia I

- AST = 93 U/L(16-61)
- ALT = 41 U/L (23-61)
- Total bilirubin = o.8 mg/dl (<o.8)
- INR = 3.74 (0.88-1.14)
- Urinalysis: 2+ glucose, 1+ protein
- Plasma tyrosine = $627 \mu mol/L (27-108)$
- Positive urine succinylacetone

Tyrosinemia Type I – Clinical Features

- Acute Neurological Crises
 - Results because succinylacetone inhibits 5-ALA dehydratase (heme synthesis)
 - Accumulation of neurotoxic 5-ALA
 - Painful paresthesias, autonomic signs (e.g., low blood pressure, difficulty urinating, sweating abnormalities)

Tyrosinemia Type I - Treatment

- Dietary Protein (Tyrosine) restriction
- NTBC (Nitisinone, 2-(2-nitro-4trifluoromethylbenzoyl)-1,3-cyclohexanedione)

Tyrosinemia Type I - Treatment

- Dietary Protein (Tyrosine) restriction
- NTBC (Nitisinone, 2-(2-nitro-4trifluoromethylbenzoyl)-1,3-cyclohexanedione)
 - Titrate until plasma succinylacetone is absent
- Even on treatment: Risk of hepatocellular carcinoma
 - AFP every 3 months
 - Liver sonogram yearly
 - Liver transplantation

Urea cycle disorders

- Results from defect in one of 6 enzymes or 2 transporter needed for conversion of ammonia into urea
- This can result in
- 1) Build up of ammonia
- 2) Accumulation of intermediates

The hepatic urea cycle

Diagnosis of urea cycle disorders

- Hyperammonemia
- Plasma amino acid abnormalities
- Turine orotic acid
- DNA sequencing
- Hepatic (or erythrocyte) enzyme testing

Urea cycle disorder – Case Presentation

- 1½ year-old girl, 1 month history of emesis and changes in sleep pattern
- Laboratory investigations:
 - ALT=1797 U/L
 - AST=784 U/L
 - INR = 4.0
 - Total bilirubin = 0.5 mg/dL
 - Ammonia = 225 μ mol/L
 - Abnormal plasma amino acid profile
 - Elevated urine orotic acid

Urea cycle disorders - Management

- Protein-restricted diet
- Alternative pathway medications
- Avoidance of prolonged fasting

Hereditary fructose intolerance – inhibition of glycolysis and gluconeogenesis

Hereditary Fructose Intolerance – Diagnostic features

- Nausea
- Vomiting
- Abdominal distress
- Failure to thrive
- Dietary avoidance of fructose
- Hypoglycemia
- Hyperlactatemia
- Hyperuricemia
- Renal tubular dysfunction

Hereditary Fructose Intolerance - Diagnosis and management

Diagnosis:

- Medical History
- Fructose challenge
- DNA sequencing
- Hepatic enzyme analysis

Management: avoidance of fructose, sucrose, sorbitol

Hepatocellular dysfunction – Diagnostic investigations

- Plasma amino acid profile
- Urine organic acid profile
 - (succinylacetone, orotic acid)
- Urine reducing substances
- Galactose-1-Phosphate and GALT enzyme level

Categories of metabolic liver disease

- Hepatocellular dysfunction
- Hepatosplenomegaly
- Cholestasis
- Recurrent Hypoglycemia

Hepatosplenomegaly

Lysosomal storage disorders:

- Gaucher
- Niemann-Pick type A/C
- GM1 gangliosidosis
- Sialidosis type II
- I-cell
- Galactosialidosis

Salla

Gaucher Disease - Pathophysiology

Gaucher Disease – Clinical Manifestations

- Hepatosplenomegaly
 - Cytopenias
 - Coagulation disorder
- Bone disease (type I)
 - Focal lytic or sclerotic lesions
 - Acute bone pain ('bone crises')
- Neurological disease (type II, III)
 - Deteriorating neurological disease

Gaucher Disease – Diagnosis

- Bone marrow exam: lipid-engorged macrophages (non-specific)
- DNA sequencing
- Enzymatic testing of leukocyte glucocerebrosidase

Gaucher Disease - Management

- Symptomatic treatments
- Bone Marrow Transplantation
- Enzyme Replacement Therapy
- Substrate Reduction Therapy

Categories of metabolic liver disease

- Hepatocellular dysfunction
- Hepatosplenomegaly
- Cholestasis
- Recurrent Hypoglycemia

Cholestasis

- Galactosemia
- Tyrosinemia
- Citrin deficiency
- Alpha-1-Antitrypsin
- Progressive Familial Intrahepatic Cholestasis
- Bile acid synthetic disorders
- Wolman
- Dubin Johnson
- Rotor

Categories of metabolic liver disease

- Hepatocellular dysfunction
- Hepatosplenomegaly
- Cholestasis
- Recurrent Hypoglycemia

Recurrent Hypoglycemia: Disorders of energy metabolism

Recurrent Hypoglycemia – categories of disorders

- Glycogen storage disorders
- Gluconeogenesis disorders
- Fatty acid oxidation disorders

Disorders of glycogen metabolism / gluconeogenesis

Glycogen storage disorders

- Liver specific isoforms
 - 0, I, III, IV, VI, IX, XI
- Typically present at age 3-4 months:
 - Fasting hypoglycemia
 - Hepatomegaly (except GSD 0)
 - Ketosis (except GSD 1)
 - Fasting lactic acidosis (except GSD 0)
 - Hyperlipidemia (except GSD 0, IV)
 - Hyperuricemia (GSD I)

Glycogen Storage Disorders - Treatment

- Avoidance of fasting
- Soy-based formula without fructose, sucrose, lactose
- Frequent overnight feeds or continuous feeds
- Uncooked corn starch or glytactin

Glycogen Storage Disorders - Diagnosis

- Liver biopsy: Histology shows fat and glycogen without fibrosis
- Enzyme assay on snap-frozen liver tissue
- DNA sequencing

Disorders of gluconeogenesis

- Fructose 1,6-bisphosphatase
- Phosphenolpyruvate Carboxykinase
- Pyruvate Carboxylase
- (Glucose-6-phosphatase)

Fructose 1,6-bisphosphatase deficiency

- Presents nearly identically to GSD I
 - Hepatomegaly
 - Elevated transaminases
 - Fasting hypoglycemia and hyperlactatemia
 - Hyperuricemia
 - Preserved response to glucagon

Fatty acid oxidation - pathophysiology

Different length fatty-acids require different enzymes

Medium Chain Fatty Acid

Short Chain Fatty Acid

Fatty acids require carnitine and carnitine transport

Fatty acid oxidation disorders – Clinical presentation

- Fasting hypoglycemia
 - Reduced or absent ketones
- Elevated transaminases
- LCHAD: maternal presentation of acute fatty liver of pregnancy or hemolysis, elevated platelets and liver failure (HELLP syndrome)
- Cardiomyopathy or arrhythmias

Fatty acid oxidation disorders - Diagnosis

- Urine ketones (during hypoglycemia)
- Acylcarnitine profile
- Free / Total carnitine
- DNA sequencing
- Enzymatic testing (hepatocytes, leukocytes)

Fatty acid oxidation disorders - Management

- Fasting avoidance (not as severe as GSDs)
 - Dextrose Infusion if NPO
- Replacement of Carnitine
- Echocardiogram (yearly)

Summary: Recurrent Hypoglycemia +/- elevated transaminases +/- hepatomegaly

Disorders:

- Glycogen storage disorders
- Gluconeogenesis disorders
- Fatty acid oxidation disorders

Investigations:

- Lactate
- Triglycerides
- Uric acid
- Acylcarnitine profile
- Free/total carnitine

Thank you!

Questions?

