

Nicholas Ah Mew, MD April 25, 2017

> SAP 2017 Buenos Aires

Early "Ornithine" Cycle

Figure 1

The Hepatic Urea Cycle

Case 1 – neonate with hyperammonemia

- 3 day-old girl
- Birth Weight = 2.8 kg
- 38 week-old female born to G1 mother
 - Uncomplicated pregnancy, SVD delivery
 - Rubella Immune, RPR non-reactive, HIV negative, GBS negative
 - Discharged at 2 days of age

At primary-care hospital

- On day 3 of life: <u>poor feeding</u>, <u>lethargy</u>, <u>hypothermia</u>
- Presents to primary hospital obtunded
- WBC = 12, Hgb = 19 g/dL, Plt = 318
- Na = 137, K = 4.8, Cl = 106, HCO₃ = $\underline{18}$
- Anion Gap = 18
- Urinalysis: <u>2+ Bacteria</u>, <u>2+ WBC</u>, <u>2+ ketones</u>

Metabolic differential diagnosis

With wide anion gap acidosis:

- Organic acidemia (e.g., Propionic or methylmalonic acidemia)
- Lactic acidosis (e.g., mitochondrial disorders)
- Ketosis

No acidosis:

- Hyperammonemia (Urea Cycle Disorder)
- Maple Syrup Urine Disease

Additional investigations

- Blood, urine and CSF cultures sent
- CSF WBC, glucose, protein were normal
- Transported to Children's National
- On transport

$$- pH = 7.5$$
, pO2=64, pCO2= 20.5, HCO₃ = 16.1

Take home point #1

Alkalemia as due to isolated respiratory alkalosis is a strong indicator of a Urea Cycle Disorder

- Can observe rapid respiratory rate without retractions or evidence of respiratory distress
- Order serum/plasma <u>ammonia level</u>

Additional investigations

- Blood, urine and CSF cultures sent
- CSF WBC, glucose, protein were normal
- Transported to Children's National
- On transport

$$- pH = 7.5$$
, pO2=64, pCO2= 20.5, HCO₃ = 16.1

• Ammonia = $706 \mu mol/L \uparrow (N: 29 - 54)$ (1202 $\mu g/dl$)

'Metabolic' laboratory tests

- Plasma amino acid profile:
 - Glutamine = $2054 \mu mol/L \uparrow (N:376 819)$
 - Citrulline = 6Ψ (N: 19 45)
 - Arginine = 25 (N: 6 120)
- Urine organic profile:
 - Ketosis
 - Elevated orotic acid
- Diagnosis: <u>Urea Cycle Disorder</u>

Take home point #2

If ammonia is markedly elevated, consider ordering:

- Plasma amino acid profile
- Urine organic acid profile

Amino acid alterations in different UCDs

Defect	Abnormal amino acids
NAGS	A cu u
CPS1	◆ Citrulline◆ Arginine
OTC	▼ Aigiiiiic
ASS	↑↑↑ Citrulline
Citrin	♣ Arginine
ASL	↑↑↑ Argininosuccinate ↑Citrulline ↓ Arginine
ARG	↑↑ Arginine
ORNT1	↑↑ Ornithine ↓ Citrulline

CHILLICHS HALIOHAL TM

Management of Acute Hyperammonemia

Time is of the essence

Msall and Batshaw (NEJM 1984)

 NH_3

Recall: Ammonia comes from protein

Two sources of protein:

- Exogenous: Restrict protein from food
- Endogenous: Prevent catabolism (i.e., breakdown of muscle protein)
 - Give lots of other calories carbohydrate & fat
- Remove ammonia
 - Ammonia scavengers
 - Extracorporeal Detoxification
- Make the urea cycle work better
 - Co-factor therapy (e.g., NCG)
 - Liver transplant
 - Gene therapy (in clinical trials)
- Treat intercurrent illness

Alternative Pathway Medications

What is a 'normal' ammonia level?

- Newborns: ammonia ~ 100 μmol/L (~170 μg/dl)
- Sick neonate (or preemie): ~ 200 μmol/L (~340 μg/dl)
- In adults and older children: < 35 μmol/L (<60 μg/dl)
- A working guideline:
 - In neonates: ammonia >150 μmol/L bears investigation
 - Older patient: ammonia >50 μmol/L
- Maturation of liver
- Fusion of cranial sutures

When to consider dialysis

- Follow clinical picture and ammonia progression NOT ammonia level
- Altered mental status
- Rapidly rising ammonia level
- Hyperammonemia refractory to medical therapy

Case 2 – Older presentation of UCD

- 2 year-old girl presents with hematemesis
- Failure to thrive (75 centile → <5 centile)
- Emesis ~3 times per week
- No fever, abdominal pain, headache
- Only eats potatoes and oatmeal
- Acute hematemesis secondary to gastritis or esophagitis from chronic vomiting

Laboratory investigations

- AST 142, ALT 175 U/L
- INR 1.5
- Albumin 3.5 mg/dl
- Bilirubin o.3 mg/dl
- Liver ultrasound normal
- Upper endoscopy normal
- Ammonia = 132 μ mol/L (\uparrow)

pe0068167 [RF] © www.visualphotos.com

Triggers for Decompensation in Partial Enzyme Deficiency

- Infection
- Large protein load (Enteral or Parenteral)
- GI bleeding
- Valproic acid (>5 published reports)
- Chemotherapy
- Post-partum stress (>5 published reports)
- Surgery

Long-term management of UCD

- Dietary protein restriction (often below the RDA)
 - Protein-free formulas
 - Formulas with essential amino acids
- Daily oral ammonia scavengers
- Daily arginine (or citrulline)
- Avoidance of prolonged fasting
 - Hospitalization if patient has recurrent emesis or other illness
 - May need infused dextrose if NPO for procedures, surgery

Replacement of Arginine - ASL deficiency

Urea cycle becomes a linear pathway Arginine HCO3 + NH4 + 2 ATP Mitochondria **CPSI** N-acetylglutamate Cytoplasm NH_3 Carbamyl Aspartate Urea Phosphate Citrin* отс Ornithine ASS ORNT1* Argininosuccinate Ornithine ASL **Aspartate** Arginine (N) Urea Fumarate ARG Argininosuccinate Children's National TM

Replacement of Arginine: OTC deficiency

Genetics and Inheritance of Urea Cycle Disorders

- All disorders are autosomal recessive except for OTC deficiency (X-linked)
- Unlikely to have a family history of affected individuals
- Common mutation for Citrullinemia in San Luis Province
 - Incidence ~ 1:2,500

Take home points

 Alkalemia due to respiratory alkalosis → ammonia

 hyperammonia plasma amino acids, urine organic acids

Thank you!

Questions?

Additional Resources

- National Urea Cycle Disorders Foundation: <u>http://www.nucdf.org/ucd.htm</u>
- Gene Reviews
 https://www.ncbi.nlm.nih.gov/books/NBK1217/
- Urea Cycle Disorders Consortium <u>https://www.rarediseasesnetwork.org/cms/UCDC</u>
- Genetics Home Reference (search by disorder) https://ghr.nlm.nih.gov/

