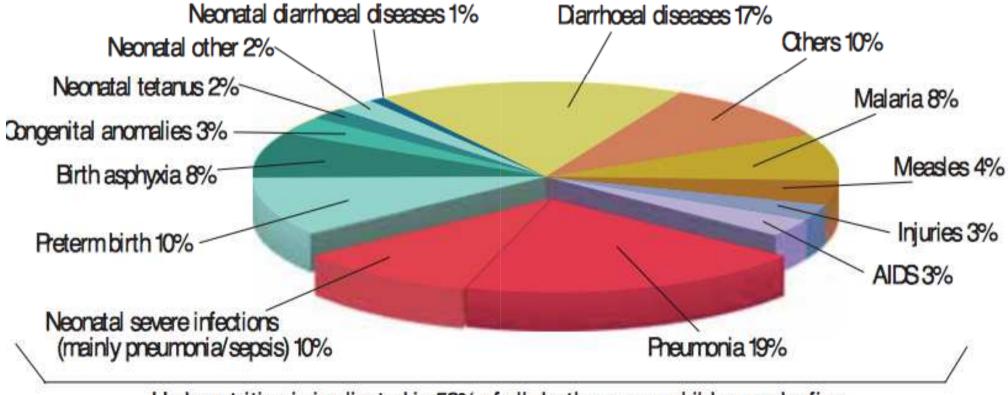


re Pneumonia Children

In the post pneumococcal conjugate vaccine era

Steven Black, MD Professor of Pediatrics Center for Global Health Cincinnati Children's Hospital

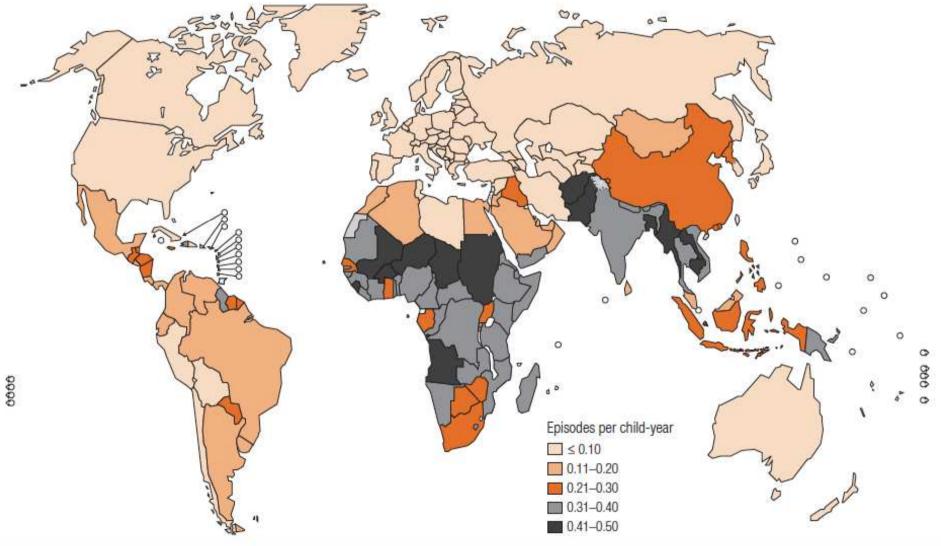
Buenos Aires April 2017


Overview

- The burden and epidemiology of pneumonia prior to the introduction of PCV
- The impact of PCVs on the disease burden
- Epidemiology of pneumonia and severe pneumonia in the PCV era
- Approaches to treatment of severe pneumonia in children

The burden of pneumonia prior to PCV WHO 2006

PNEUMONIA IS THE LEADING KILLER OF CHILDREN WORLDWIDE


Gobal distribution of cause-specific mortality among children under five, 2004

Undernutrition is implicated in 53% of all deaths among children under five.

Global Incidence of Pneumonia by

Fig. 1. Incidence of childhood clinical pneumonia at the country level

Bulletin of the World Health Organization 2008;86:408–416.

PCV?

ETIOLOGY OF COMMUNITY-ACQUIRED PNEUMONIA IN THE NON-IMMUNOSUPPRESSED HOST REQUIRING HOSPITALIZATION

	Patients	Pathogens	Pathogens Definite/ Presumptive	
Etiology	n (%)	n (%)	n	
Streptococcus pneumoniae	39 (21)	65 (29)	30/35	
Legionella prieumophila	14 (8)	17 (8)	17	
Atypical bacterial agents	26 (14)	41 (18)	41	
Chlamydia pneumoniae	9 (5)	15 (7)		
Chlamydia psittaci	2 (1)	2 (1)		
Mycoplasma pneumoniae	9 (5)	13 (6)		
Coxiella burnetti	6 (3)	11 (5)		
Atypical viral agents	26 (14)	39 (17)	39	
Influenza virus A	10 (6)	16 (17)		
Influenza virus B	6 (3)	7 (8)		
Parainfluenza virus 1	2 (1)	4 (2)		
Parainfluenza virus 2	2 (1)	2 (1)		
Parainfluenza virus 3	3 (2)	3 (1)		
Adenovirus	2 (1)	2 (1)		
Respiratory syncytial virus	1 (1)	5 (2)		
Nonprieumococcal, nonatypical agents	19 (10)	39 (17)	15/24	
Haemophilus influenzae	11 (6)	25 (11)	6/19	
Moraxella catarrhalis	2 (1)	4 (2)	1/3	
Staphylococcus aureus	5 (3)	7 (3)	5/2	
Streptococcus viridans	1999 - 1999 -	1 (1)	1/0	
Streptococcus mitis	1 (1)	1 (1)	1/0	
Enterococcus faecalis	2000	1 (1)	1/0	

Ruiz, Ewig, Marcos et al: CAP in Barcelona AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE 19

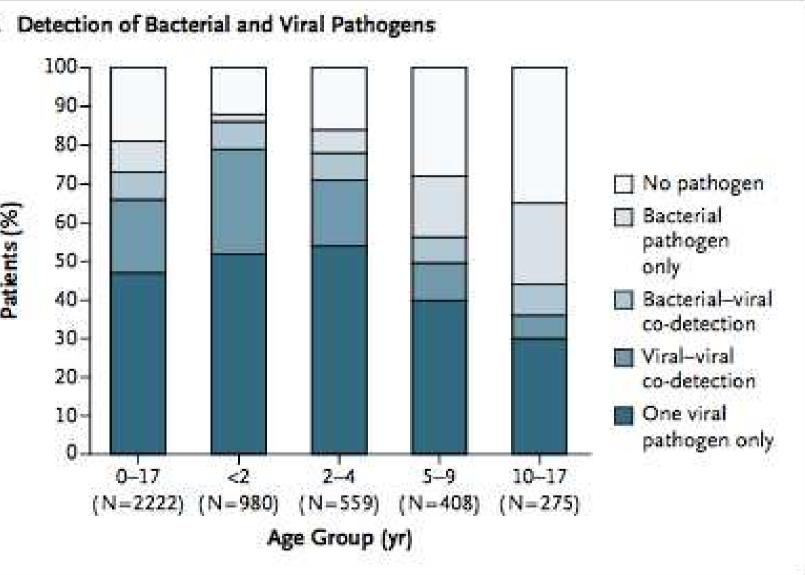
Pediatric Pneumonia 1999

IMPACT OF SEVERITY OF PNEUMONIA ON MICROBIAL ETIOLOGY

Microbial Etiology	Number of Patients/ Proportion of Patients with Corresponding Etiology (%)	Odds Ratio	95% Confidence Interval	p Valu
Severe pneumonia (ICU admission)	64			
Univariate				,
Streptococcus pneumoniae	18/65 (28)	2.4	1.3-4.4	0.00
Bacteremic Streptococcus pneumoniae	8/22 (36)	3.2	1.3-8.1	0.00
Gram-negative enteric bacilli +				P
Pseudomonas aeruginosa	7/24 (29)	2.3	0.8-6.1	0.09
Mixed infections	12/41 (29)	2.4	1.1-5.3	0.02
Bacteremia	11/34 (33)	2.8	1.2-6.4	0.00
Multivariate			1	
Streptococcus pneumoniae		2.5	1.3-4.7	0.00
Gram-negative enteric bacilli +				
Pseudomonas aeruginosa	—	2.5	0.99-6.5	0.05

Definition of abbreviations: ICU = Intensive care unit.

Ruiz, Ewig, Marcos et al: CAP in Barcelona AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE 19


ter PCV: CAP requiring hospitalization in US ildren 2015

racteristic	Children with Radiographic Evidence of Pneumonia (N=2358)
group — no. (%)	
<2 yr	1055 (45)
2—4 yr	595 (25)
5—9 yr	422 (18)
10–17 yr	286 (12)
ptom — no. (%)	
Cough	2230 (95)
Fever or feverish feeling	2155 (91)
Anorexia	1766 (75)
Dyspnea	1657 (70)
underlying condition — no. (%)*	1197 (51)
Asthma or reactive airway disease — no. (%)	779 (33)
Preterm birth among children <2 yr — no./total no. (%)	218/1055 (21)

Ra	diographic finding — no. (%)†	
	Consolidation	1376 (58)
	Alveolar or interstitial infiltrate	1195 (51)
	Pleural effusion	314 (13)
H¢	ospitalization	
	Length of stay — days	
	Median	3
	Interquartile range	2–5
	Intensive care unit admission — no. (%)	497 (21)
	Invasive mechanical ventilation — no. (%)	166 (7)
	Death in the hospital — no. (%)	3 (<1)

N ENGL J MED 372;9 NEJM.ORG FEBRUARY 26, 201

CAP requiring hospitalization in US children 2015

N ENGL J MED 372;9 NEJM.ORG FEBRUARY 26, 2015

CAP requiring hospitalization in US children 2015 C Detection According to Age Group <2 Yr 2-4 Yr (N=862) (N=467) RSV HRV. HMPV AdV M. pneumoniae 5-9 Yr 10-17 Yr PIV (N=294) (N=181) Flu CoV S. pneumoniae Other

N ENGL J MED 372;9 NEJM.ORG FEBRUARY 26, 2015

Mortality due to Pneumonia in Children in

	Aged 0-	Aged 0–11 months		Aged 12–59 months		-59 months
	Studies	CFR (%)	Studies	CFR (%)	Studies	CFR (%)
Africa	9	3.8% (2.4-5.9)	8	1.9% (1.2-3.2)	11	3.9% (2.7-5.5)
Americas	10	1.6% (1.1-2.4)	10	0.6% (0.2–1.3)	11	1.3% (0.8–1.9)
Eastern Mediterranean	1	9.9% (8.6-11.5)		(44	2	7.6% (4.1-13.9)
Europe	3 4 3)	(1992) 1 . 19	42	300	1	0.4% (0.3-0.5)
Southeast Asia	6	2.6% (1.4-4.7)	4	0.3% (0.1-0.9)	9	2.1% (1.1-4)
Western Pacific	1	2.4% (1.3-4.3)	•	2(**)	3	2-3% (1-7-3-2)
Developing	26	2.4% (1.7-3.6)	21	0.8% (0.4-1.3)	34	2.3% (1.6-3.4)
Industrialised	1	0.8% (0.7-0.9)	1	0.3% (0.2-0.5)	3	0-6% (0-4-0-8)
Global	27	2.3% (1.5-3.4)	22	0.7% (0.4-1.2)	37	2.1% (1.4-3.1)

Data in parentheses are 95% CI. CFR=case-fatality ratio.

Table 2: Case-fatality ratio due to severe acute lower respiratory infections in children younger than 5 years who were admitted, by region

Nair, Shabi Madhi, Angela Gentile et al:

and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010

Pneumonia incidence and disease burder in Latin American Children in 2010

Age	Severe ARLI Estimated number of cases/yr	Incidence Severe ALRI (per 1000/yr)	Very Severe ALRI Estimated number of cases/yr	Incidence Very Severe ALRI (per 1000/yr)
Age < 1 years	693,000	46	130,000	8.6
Age < 5 years	1,525,000	19.8	179,000	3.0

Nair, Shabi Madhi, Angela Gentile et al: Global and regional burden of hospital admissions for severe acute lower respiratory infections n in 2010

rneununa enuuyy in Ecuauunan

محمال الطح

Pneumonia etiology by age category.

		Age G	aroup N (%)	Total (N =
hogens		< 1 year (n = 238)	1 to 5 years (n = 168)	
us		35 (14.7%)	27 (16.1%)	62 (15.
1				40 (9.9
	Туре А	16 (6.7%)	13 (7.7%)	29 (7.1
	Туре В	7 (2.9%)	4 (2.4%)	11 (2.7
enza				57 (14.
	Type 1	10 (4.2%)	5 (3.0%)	15 (3.7
	Type 2	3 (1.3%)	4 (2.4%)	7 (1.7
\longrightarrow	Туре З	27 (11.3%)	8 (4.8%)	35 (8.6
netapneumovirus		40 (16.8%)	31 (18.5%)	71 (17.
ory syncytial virus		→ 105 (44.1%)	54 (32.1%)	159 (39
I Pathogens				
occus pneumoniae (n = 403)		20 (8.5%)	17 (10.1%)	37 (9.2
sma pneumoniae		0 (0%)	3 (1.8%)	3 (0.74

ology of severe pneumonia in Ecuadorian children. PLoS ONE 12(2): e0171687. doi:10.1371/ journal.pone.0171687

Impact of PCV in Latin America: The COMPAS Trial

- Efficacy against 25.7% (95% CI: 8.4%, 39.6%) against World Health Organization–defined consolidated CAP.
- Efficacy against Invasive Pneumococcal Disease due to vaccine serotypes: 100% (95% CI: 74.3%, 100%)
- Efficacy against any IPD was 65.0% (95% CI: 11.1%, 86.2%)
- Serotypes in PCV13 and PCV-10 were selected because they caused the most disease in children. BUT
- In the COMPAS trial with most patients coming from Argentina, 35% of pneumococcal IPD remained.
- Therefore we can not forget about the pneumococcus yet !

PLOS-ONE: http://dx.doi.org/10.1371/journal.pmed.1001657

Pleural Effusion follow PCV 13

ex	Age on Admission (years)	PCV13 Immunization History	Previous PCV7/PCV10 Immunization	Chest Tube Placement	Fibrinolys Performe
	21/2	2 doses: 21 and 25 months	No	Yes	Yes
	31/2	1 dose: 27 months	No	Yes	Yes
	31/2	1 dose: 24 months	PCV7, 3 doses	Yes	Yes
	4	1 dose: 32 months	No	Yes	Yes
	6	1 dose: 54 months	PCV7, 3 doses	Yes	No

The Pediatric Infectious Disease Journal • Volume 33, Number 1, January 2014

Antibiotic Resistant Pneumococcus

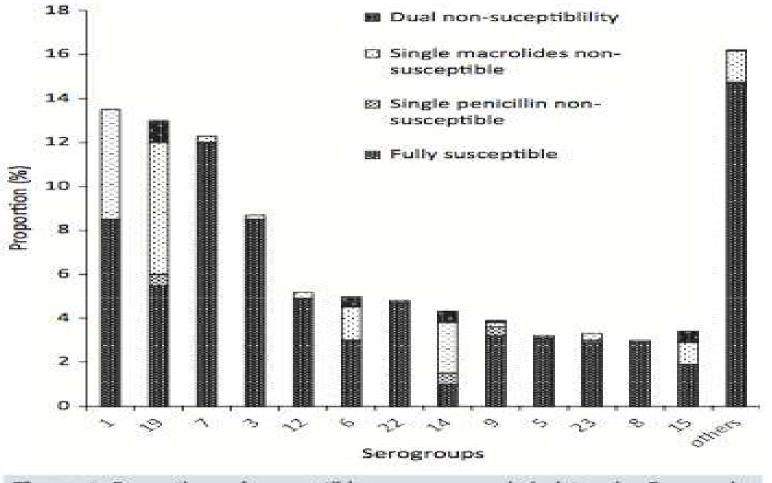
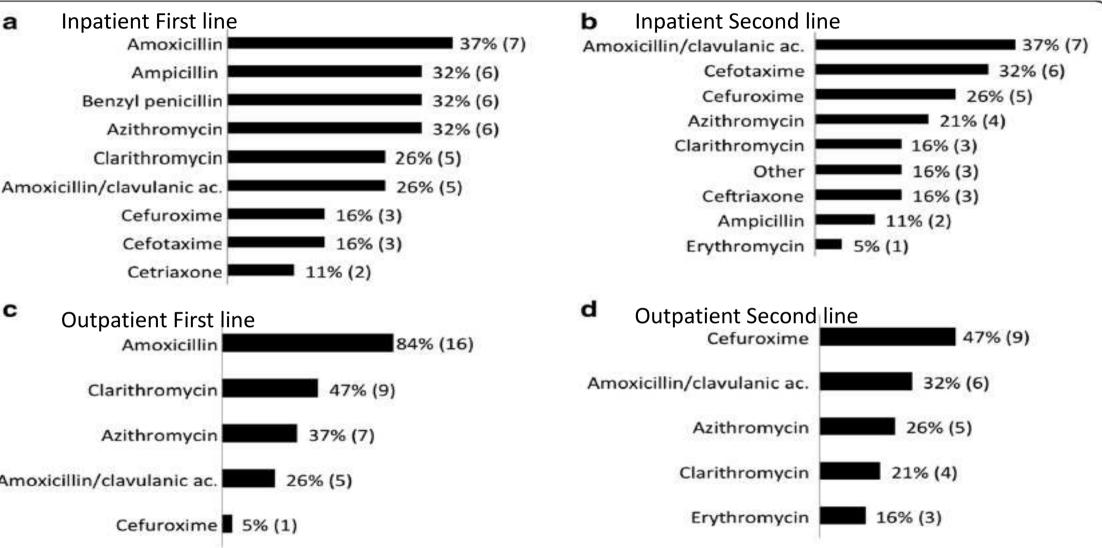



Figure 1 Proportion of susceptible pneumococcal isolates in Europe by serogroups. Data from the Annual Report of the European Antimicrobial Resistance Surveillance Network (16).

Need to consider other treatments besides penicillin in a toxic child Some have recommended high dose amoxicillin others agents such as Ceftriaxone. Clindamvcin or Teicoplanin (Galli Acta Pediatrica 2013)

eatment of Childhood Pneumonia in Europe

ig. 3 Percentage of European medical centres that use various specified antibiotics for outpatient and inpatient treatment of community acquired neumonia in children in European medical centres. a Inpatient first-line treatment b Inpatient second-line treatment c Outpatient first-line treatment, I Outpatient second-line treatment. Please note that some participating medical centres use more than one antibiotic

Usonis et al. Pneumonia (2016) 8:5

ntibiotic Treatment of Severe Pneumonia in Childre

e nonia	Either ceftriaxone 100 mg/kg per day in 2 divided doses (MAX 4 g/day), OR cefotaxime 150 mg/kg per day in 4 divided doses (MAX 10 g/day) PLUS one of the following: •Azithromycin 10 mg/kg once per day for two days (MAX 500 mg/day); transition to or therapy at 5 mg/kg per day as soon as clinically appropriate, OR •Erythromycin¥ 20 mg/kg per day in 4 divided doses (MAX 4 g/day), OR •Doxycycline** 4 mg/kg per day in 2 divided doses (MAX 200 mg/day); transition to or therapy as soon as clinically appropriate
e nonia	Vancomycin 60 mg/kg per day in 4 divided doses (MAX 4 g/day) PLUS either Ceftriaxone 100 mg/kg per day in 2 divided doses (MAX 4 g/day) OR cefotaxime 150 mg/kg per day divided doses (MAX 10 g/day) PLUS Azithromycin 10 mg/kg once per day for two days (MAX 500 mg/day); transition to oral therapy at mg/kg per day as soon as clinically appropriate PLUS (if necessary) NafcillinΔΔ 150 mg/kg per day in 4 or 6 divided doses (MAX 12 g/day) PLUS (if indicated) Antiviral treatment for influenza
al ed nonia	Either gentamicin ⁺⁺ 7.5 mg/kg per day divided in 3 doses for children <5 years; 6 to 7.5 mg/kg per divided in 3 doses for children ≥5 years OR amikacin 15 to 22.5 mg/kg per day divided in 3 doses, F one of the following: •Piperacillin-tazobactam 300 mg/kg per day in 4 divided doses (MAX 16 g/day), OR •Meropenem 60 mg/kg per day in 3 divided doses (MAX 3 g/day), OR •Ceftazidime 125 to 150 mg/kg per day in 3 divided doses (MAX 6 g/day), OR •Cefepime 150 mg/kg per day in 3 divided doses (MAX 4 g/day), OR •Clindamycin 30 to 40 mg/kg per day in 3 or 4 divided doses (MAX 3.6 g/day)

eatment of CAP in the era of antibiotic resistanc

Antibiotics used in drug-resistant community-acquired pneumonia

S	Dose	Route	Adverse effects	Comments	Species
nycin	15 mg/kg every 6-8 h	IV	Nephrotoxicity, ototoxicity, 'red man' syndrome	Slowly bactericidal. Therapeutic levels to be monitored	Streptocoo pneumo Staphylo aureus
anin	10 mg/kg every 12 h for three doses then 10 mg/kg/day	IV/IM	Nephrotoxicity, ototoxicity, thrombocytopenia	Bactericidal. Therapeutic levels to be monitored	S. pneumo S. aureu
id	10 mg/kg (max 600 mg) every 8 <12 years; every 12 h >12 years	IV/PO	Lactic acidosis, myelosuppression, peripheral and optic neuropathy	Bacteriostatic. Inhibit toxin synthesis Treatment duration <28 days	S. pneumo S. aureu
nycin	6–10 mg/kg (max 1.2 g) every 6 h	IV/PO	Diarrhoea, C <i>difficile</i> colitis	Bacteriostatic, Inhibit toxin synthesis	S. pneumo S. aureu
icin	10 mg/kg (max 600 mg) every 12 h	IV/PO	Hepatotoxicity, anaphylaxis agranulocytosis	Bactericidal. Colours biological fluids red. Rapid development of resistance in monotherapy	S. aureus
ncim	10 mg/kg/day	IV	Nausea, vomiting, taste sense disorders, nephrotoxicity	Bactericidal. Not approved for children	S. pneumo S. aureu
line	600 mg every 12 h	IV.	Rash	Bactericidal. Not approved for children	S. pneumo S. aureu
line	2 mg/kg stat, then 1 mg/kg	IV	Diarrhoea, nausea, vomiting, headache, raised ALT/AST, pancreatitis	Bacteriostatic. Not approved for children	S. pneumo S. aureu
dine	1–2 mg/kg (max 200 mg) every 12 h	PO/W	Diarrhoea, Hepatotoxicity, tooth discolouration in children	Bacteriostatic. Not recommended <8 years	Mycoplasn pneumoi
cline	4 mg/kg stat (max 200 mg) then 2 mg/kg (max 100 mg)	PO	Dizziness, headache, hepatotoxicity, diarrhoea, tooth discolouration in children	Bacteriostatic. Not recommended <8 years	M. pneum
wacin	10-15 mg/kg every 12 h PO, every 8-12 h IV	IV/PO	Rupture of tendon. Cartilage damage reported in animals	Bactericidal. Not recommended for children	S. pneumo M. pnuei
xacin	8 mg/kg (max 500 mg) every 12 h	IV/PO	Rupture of tendon. Cartilage damage reported in animals	Bactericidal. Not recommended for children	S. pneumo M. pnues
xacin alli: Ac	10 mg/kg/day (max 400 mg) ta Pediatrica 2015	IV/PO	Rupture of tendon. Cartilage damage reported in animals	Bactericidal. Not recommended for children	S. pneumo M. pnue

Summary

- There are multiple causes of severe pneumonia and pneumonia with effusion in children viruses not only bacteria play a key role.
- It is important to make a clinical assessment of severity early, obtain cultures as well as PCR testing.

Genomic testing will provide sensitivity and etiology rapidly soon

- Don't forget
 - Pneumococcus is down but not out.
 - TB
 - Co-infection with viruses and bacteria
- Important to reevaluate your therapy frequently to assess response