

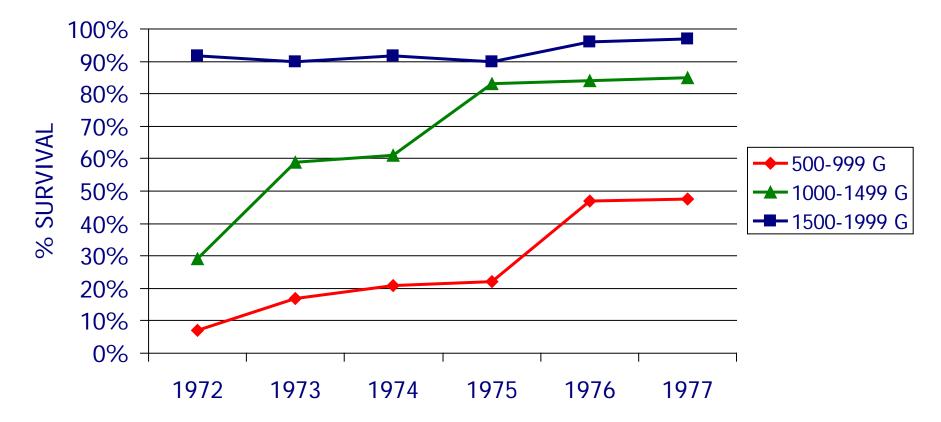
Bronchopulmonary Dysplasia: Evidence for Best Practice

Roger F. Soll, M.D. H. Wallace Professor of Neonatology, University of Vermont President, Vermont Oxford Network Coordinating Editor, Cochrane Neonatal

roger.soll@uvmhealth.org

Bronchopulmonary Dysplasia: Evidence for Best Practice

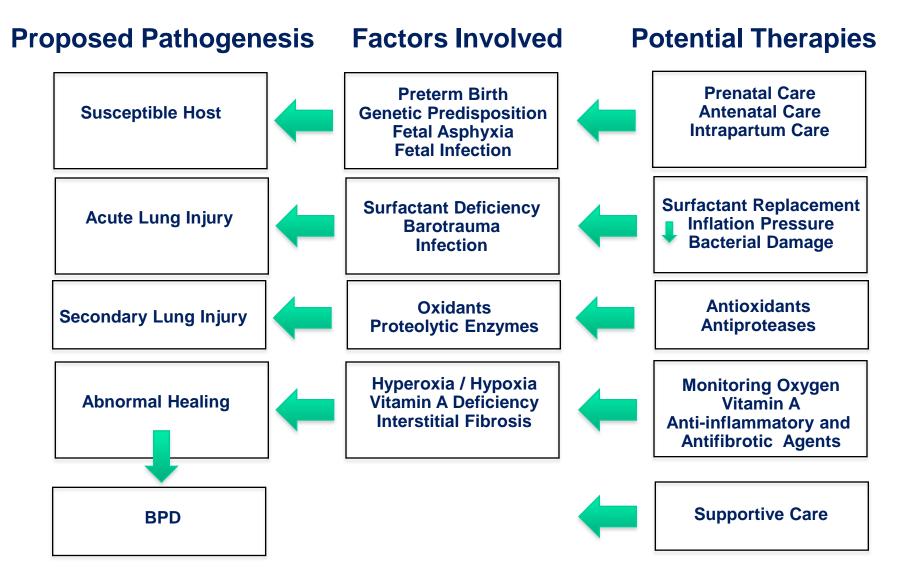
Disclosure


Dr. Soll is President of The Vermont Oxford Network and Coordinating Editor of Cochrane Neonatal

No other relevant financial issues to disclose.

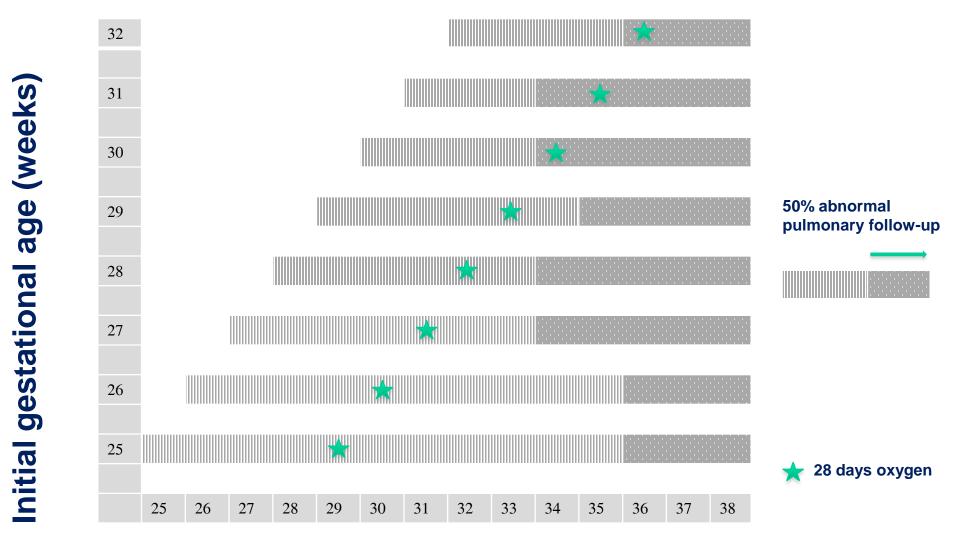
Bronchopulmonary Dysplasia: Evidence for Best Practice

- Incidence and prevalence of Bronchopulmonary Dysplasia
- Associations, risk factors, and protective factors
- Bronchopulmonary Dysplasia definitions
- Evidence based practices for:
 - Prevention of Bronchopulmonary Dysplasia
 - Treatment of Bronchopulmonary Dysplasia

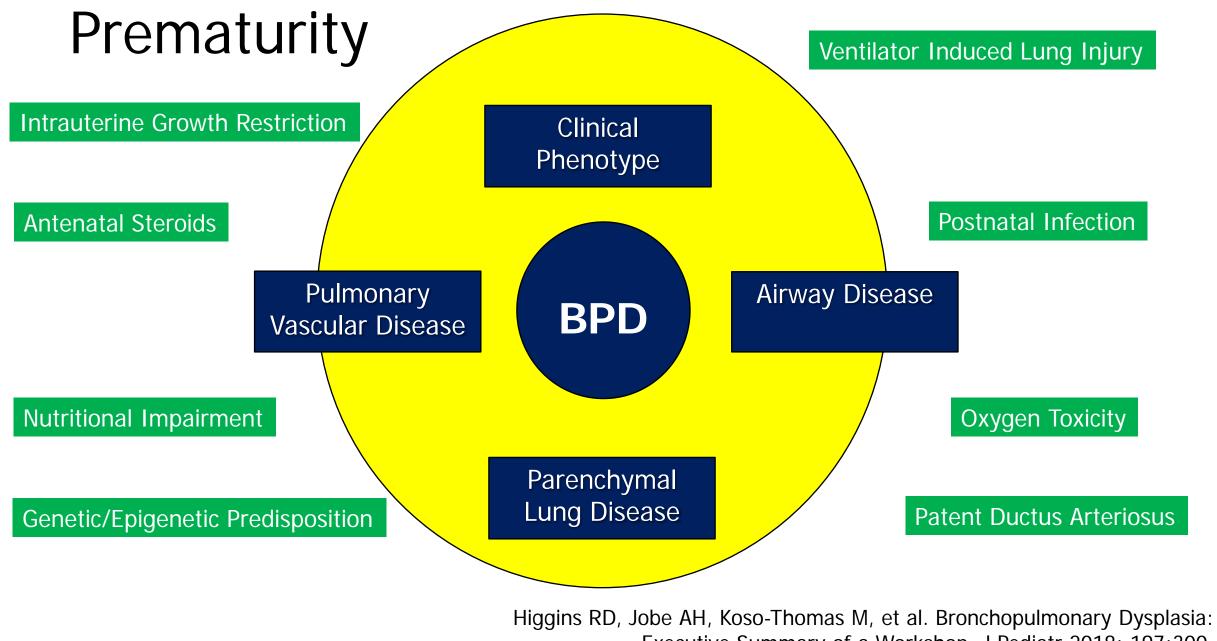

Improved survival with the introduction of mechanical ventilation in the 1970's

Wung JT and coworkers. J Pediatrics 1979; 95: 846

Bronchopulmonary Dysplasia: proposed pathogenesis, contributing factors and potential treatments



What do we mean when we say "Bronchopulmonary Dysplasia"?


Original definition:

- On assisted ventilation at some time during first 3 days of life
- Requiring supplemental oxygen at day 28 to 30
- Radiographic features consistent with bronchopulmonary dysplasia

Evolving definitions: Why 36 weeks' postmenstrual age?

Corrected gestational age (weeks)

Executive Summary of a Workshop. J Pediatr 2018; 197:300.

Newer Definitions: Bronchopulmonary Dysplasia

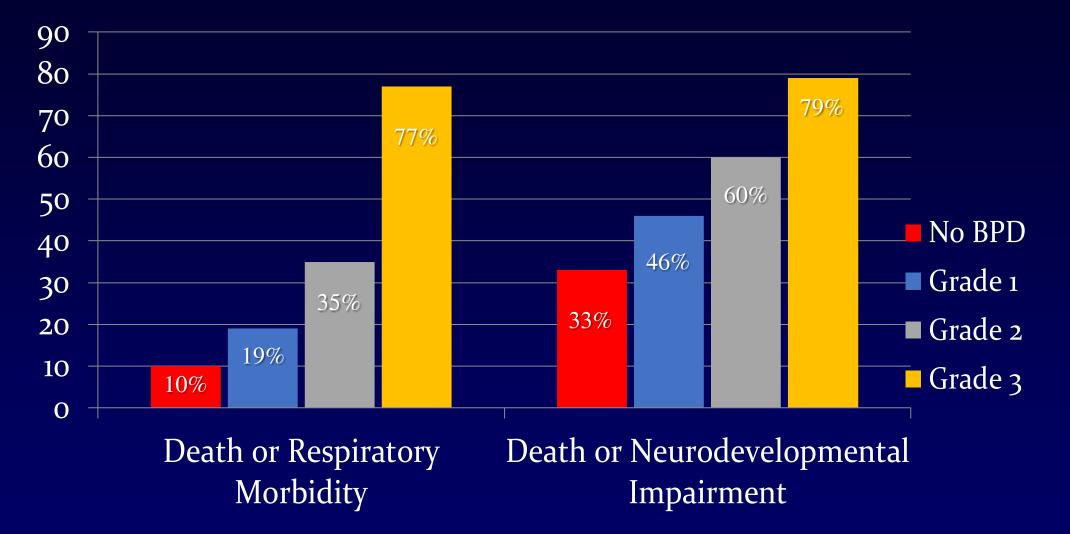
Severity – Based Diagnostic Criteria for BPD For infants at 36 weeks PMA or discharge

Received oxygen for at least 28 days and at 36 week's postmenstrual age has:

Mild BPD:in room airModerate BPD:FiO2 < 0.3Severe BPD: $FiO2 \ge 0.3$ and/or PPV or CPAP

Ehrenkranz 2005

Suggested refinements to the definition of Bronchopulmonary Dysplasia


A preterm infant (< 32 weeks' gestational age) with BPD has persistent parenchymal lung disease, radiographic confirmation of parenchymal lung disease, and at 36 weeks' postmenstrual age requires one of the following FiO2 ranges/oxygen levels/O2 concentrations for > 3 consecutive days to maintain arterial oxygen saturation in the 90% to 95% range

<u>Grade</u>	Invasive IPPV	<u>NCPAP, NIPPV</u> <u>Nasal cannula</u> <u>> 3 L/min</u>	<u>Nasal cannula</u> <u>1 to 3 L/min</u>	<u>Hood Oxygen</u>	<u>Nasal cannula</u> <u>< 1 L/min</u>
Grade I	n/a	0.21	0.22 to 0.29	0.22 to 0.29	0.22 to 0.70
Grade II	0.21	0.22 to 0.29	<u>></u> 0.30	<u>></u> 0.30	> 0.70
Grade III	> 0.21	<u>></u> 0.30			

Grade III Early death (between 14 days postnatal age and 36 weeks) owing to persistent parenchymal lung(A) disease and respiratory failure that cannot be attributable to other neonatal morbidities

Higgins and colleagues. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr 2018; 197:300.

BPD Severity and Outcome

Jensen EA and colleagues. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants: An Evidence-Based Approach. Am J Respir Crit Care Med. 2019 Apr 17. doi: 10.1164/rccm.201812-2348OC.

Revisiting the Definition of Bronchopulmonary Dysplasia: Effect of Changing Panoply of Respiratory Support for Preterm Neonates

Tetsuya Isayama, MD; Shoo K. Lee, MBBS, PhD; Junmin Yang, MSc; David Lee, MD; Sibasis Daspal, MD; Michael Dunn, MD; Prakesh S. Shah, MD, MSc; for the Canadian Neonatal Network and Canadian Neonatal Follow-Up Network Investigators

JAMA Pediatrics 2017 doi:10.1001/jamapediatrics.2016.4141

JAMA Pediatrics

Association of 6 Traditional Bronchopulmonary Dysplasia (BPD) Definitions With Adverse Outcomes at 18 to 21 Months of Age

A Serious respiratory morbidity

Traditional BPD Definitions	Adverse Outcome In BPD (+) Infants	Adverse Outcome In BPD (–) Infants	AOR (95% CI) ^a										
Oxygen, 28 d	71/893 (8.0)	17/513 (3.3)	1.3 (0.7-2.4)		-	-					0.72		
Oxygen/RS, 28 d	81/1123 (7.2)	7/283 (2.5)	1.9 (0.7-5.0)	ł	-						0.721		
Oxygen, 28 d and Oxygen/RS 36 wk PMA	62/579 (10.7)	26/827 (3.1)	2.4 (1.4-4.2)	-			$\vdash \vdash$				0	.735	
Oxygen/RS, 28 d and 36 wk PMA	66/620 (10.7)	22/786 (2.8)	2.9 (1.6-5.2)			⊢		1				0.743	
Oxygen, 36 wk PMA	61/548 (11.1)	27/858 (3.2)	2.6 (1.5-4.4)									0.742	
Oxygen/RS 36 wk PMA	69/652 (10.6)	19/754 (2.5)	3.4 (1.8-6.3)	-		⊢	_					0.7	5
				0.5	1	2		5 10	0.	.71	0.73	0.75	0.77
						AOR (95	% CI)				AU	C	

Definitions using oxygen requirement alone as the criterion at various postmenstrual ages were less predictive compared with those using the criterion of oxygen/respiratory support (RS) (receiving supplemental oxygen and/or positive-pressure RS)

Among those, oxygen/RS at 36 weeks had the highest AOR and area under the curve (AUC) for all outcomes.

JAMA Pediatrics 2017 doi:10.1001/jamapediatrics.2016.4141

Bronchopulmonary Dysplasia: Evidence for Best Practice

Why do I care about Bronchopulmonary Dysplasia?

Why do I care about Bronchopulmonary Dysplasia?

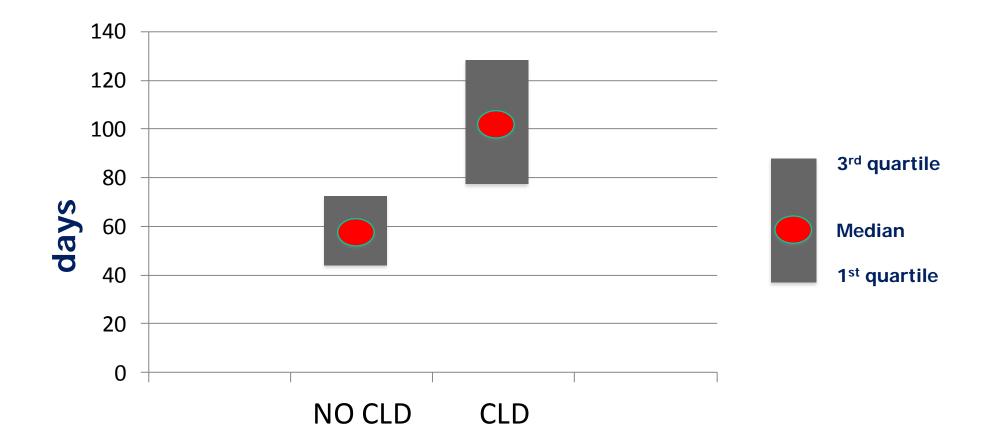
Impact on Pulmonary Outcomes

In the first 2 years of life

- Re-hospitalization for respiratory illness

After 4 to 5 years of life

- Asthma
- Chronic respiratory symptoms


In adolescence

- Abnormal pulmonary function

Impact of Bronchopulmonary Dysplasia on Death or Severe Neurodevelopmental Delay SCHMIDT AND COWORKERS 2003

Death or severe developmental delay	Relative Risk (95% CI)	Decreased (Ris 0.2 0.5 1.	,
Death or Severe Developmental De	elay at 18 mont	hs	
Bronchopulmonary Dysplasia 2	.4 (1.8 to 3.2)		
Brain Injury 3	.7 (2.6 to 5.3)		
Severe ROP 3.	.1 (1.9 to 5.0)		—
Schmidt et al. Impact of Bronchopulmonary D Brain Injury and Severe Retinopathy of Prema Outcome of Extremely Low Birth Weight Infai Months. Jama 2003	aturity on	0.2 0.5 1 Relative Risk	.0 2.0 4.0 and 95% CI

Chronic Lung Disease and Length of Stay

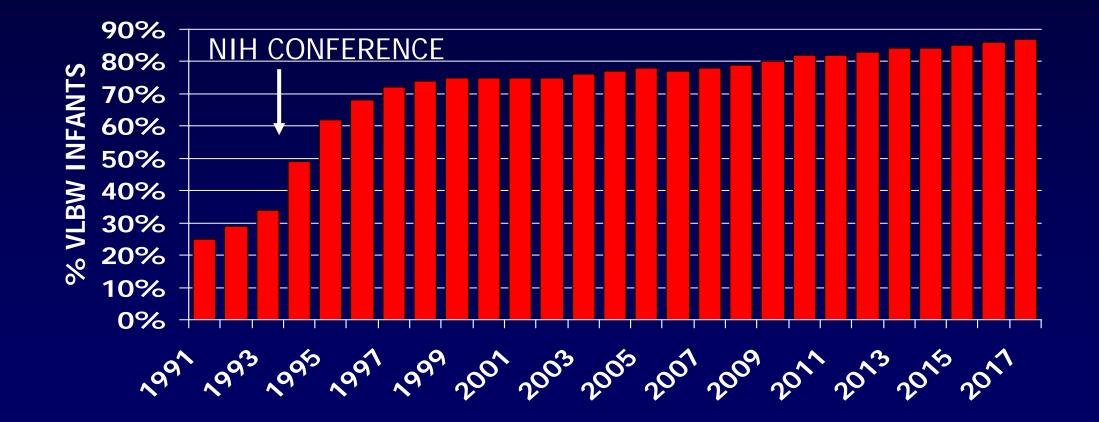
VON VLBW Database 2013

THERAPY FOR BPD: EVIDENCE BASED?

Bronchopulmonary Dysplasia: Evidence for Best Practice

What can we do prior to delivery to prevent BPD?

- Prevention of Preterm Birth
- Antenatal Corticosteroids


PROPHYLACTIC CORTICOSTEROIDS PRIOR TO PRETERM BIRTH

OVERVIEW OF 18 RANDOMIZED CONTROLLED TRIALS Typical **Relative Risk** Decreased \leftarrow Risk \rightarrow Increased **Outcome (# of trials)** (95% CI) 0.2 0.51.0 2.0 4.0 **RDS (14)** 0.64 (0.56, 0.72) Periventricular hemorrhage (4) 0.57 (0.41, 0.78) Necrotizing enterocolitis (4) 0.60 (0.33, 1.09) Bronchopulmonary dysplasia (3) 1.38 (0.90, 2.11) Neonatal death (13) 0.63 (0.51, 0.77) 0.2 0.5 1.0 2.0 4.0

Typical Relative Risk (95% CI)

Antenatal Corticosteroids

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2017

Bronchopulmonary Dysplasia: Evidence for Best Practice

Can we prevent bronchopulmonary dysplasia with newer techniques of respiratory support?

With newer forms of conventional mechanical ventilation? With High Frequency Oscillation (HFOV)? With less invasive forms of respiratory support like nasal CPAP?

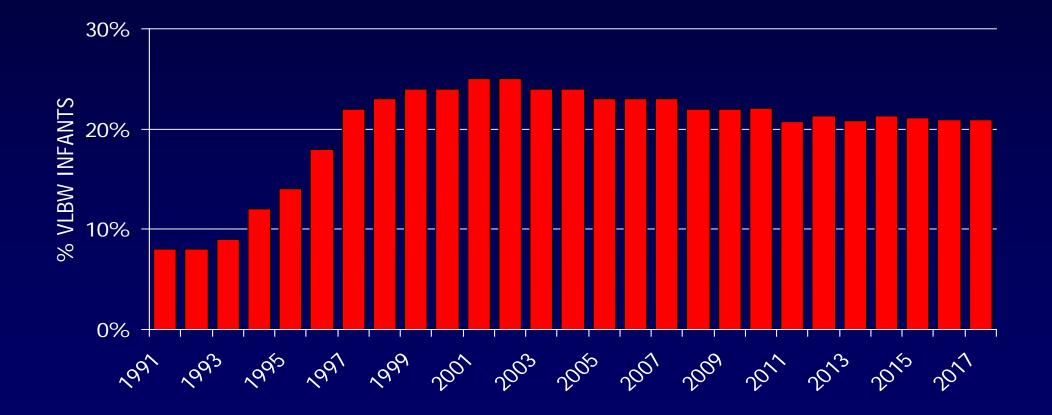
PATIENT TRIGGERED VENTILATION

OVERVIEW OF 9 RANDOMIZED CONTROLLED TRIALS

Outcome (number of studies)	Typical Risk Difference (95% CI)	Decreased ← Risk → Increased 0.2 0.5 1.0 2.0 4.0
AIRLEAK (6)	0.00 (-0.03, 0.03)	
PATENT DUCTUS ARTERIOSUS (5)	-0.04 (-0.09, 0.02)	
SEVERE IVH (5)	0.00 (-0.02, 0.03)	
O2 at 28 DAYS (4)	-0.03 (-0.09, 0.03)	
O2 at 36 WEEKS PCA (3)	-0.04 (-0.09, 0.00)	
MORTALITY (4)	0.02 (-0.01, 0.06)	
Modified from Greenough 2000		0.2 0.5 1.0 2.0 4.0 Typical Relative Risk and 95% CI

Elective High Frequency Oscillatory Ventilation

META-ANALYSIS OF 19 RANDOMIZED CONTROLLED TRIALS

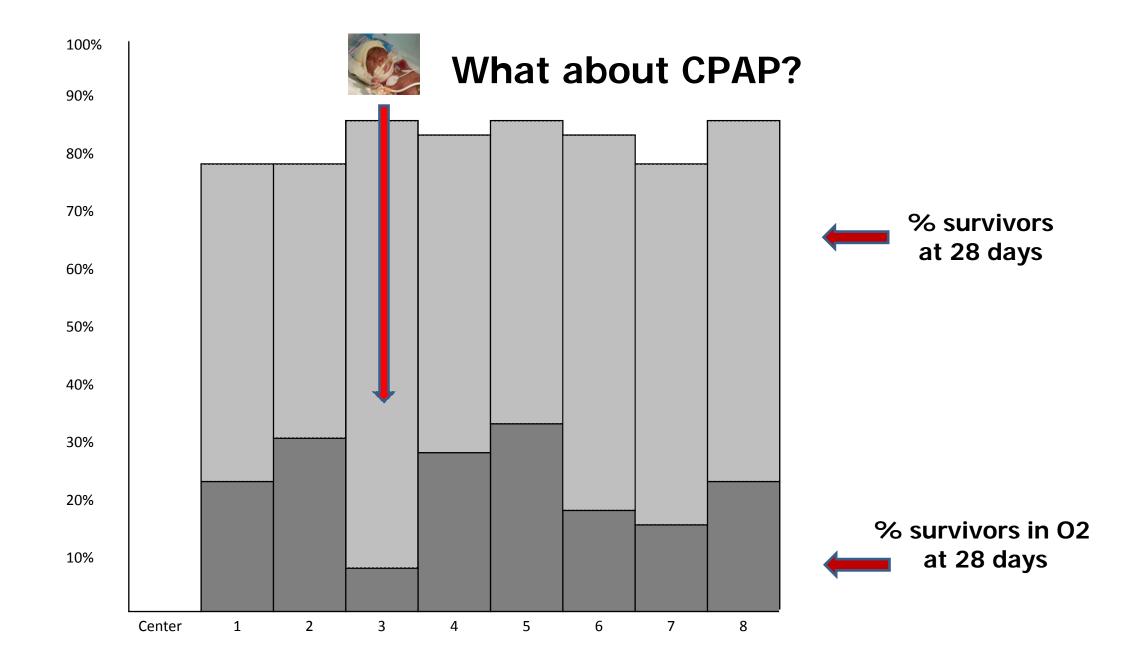

OUTCOME (STUDIES)	Typical Risk Difference (95% CI)	Decreased ← Risk → Increased 0.2 0.5 1.0 2.0 4.0
PULMONARY AIRLEAK (13)	0.04 (0.01, 0.07)	
IVH (12)	0.02 (-0.02, 0.05)	·
SEVERE IVH (18)	0.01 (-0.01, 0.04)	►
PVL (17)	0.00 (-0.01, 0.02)	-
SEVERE RETINOPATHY (12)	-0.04 (-0.07, -0.01)	
CHRONIC LUNG DISEASE (17)	-0.05 (-0.08, -0.02)	
DEATH (17)	-0.01 (-0.03, 0.02)	
CLD/DEATH @ 36 WKS PMA (17)	-0.05 (-0.08, -0.01)	
Cools 2015		0.2 0.5 1.0 2.0 4.0

Typical Relative Risk and 95% CI

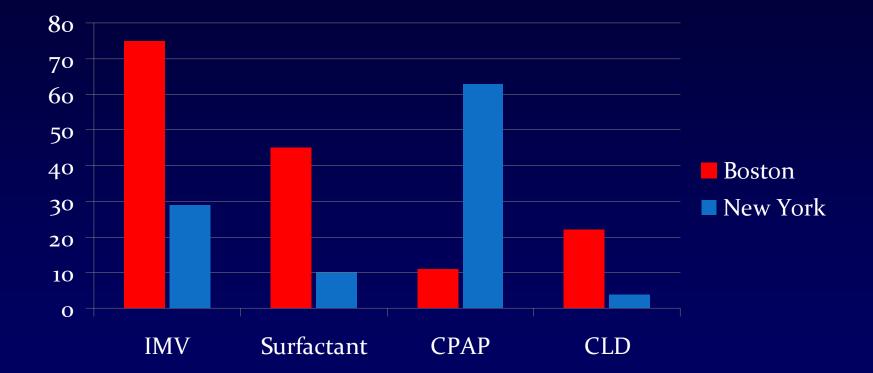
COUS ZOTO

High Frequency Ventilation

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2017



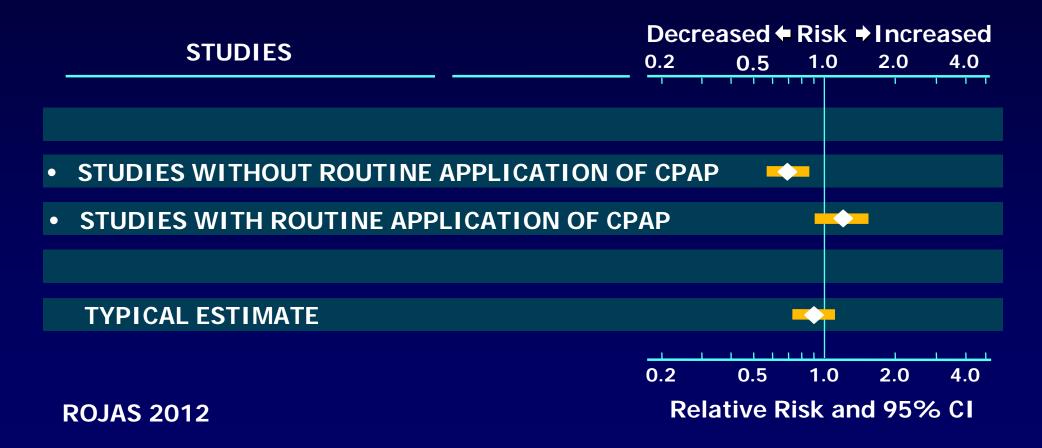
Volume Targeted Ventilation vs. Pressure Limited Ventilation Effect on BPD or Death


	Volume targ	geted	Pressure I	imited		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Үеаг	M-H, Fixed, 95% Cl
1.3.1 Strict Studies								
Keszler 2004a	3	9	6	9	6.3%	0.50 [0.18, 1.40]	2004	
Lista 2004	7	30	8	23	9.5%	0.67 [0.28, 1.58]	2004	
Singh 2006 Subtotal (95% CI)	21	57 96	27	52 84	29.7% 45.5 %	0.71 [0.46, 1.09] 0.67 [0.47, 0.96]	2006	
Total events	31		41					
Heterogeneity: Chi ^z =	0.38, df = 2 (F	^o = 0.83)); I ^z = 0%					
Test for overall effect:	Z = 2.16 (P =	0.03)						
1.3.2 Hybrid Studies								
Sinha 1997	2	25	7	25	7.4%	0.29 [0.07, 1.24]	1997	
D'Angio 2005 Subtotal (05% CI)	38	104	45	105	47.1%		2005	
Subtotal (95% CI)	40	129	50	130	54.5%	0.78 [0.56, 1.08]		
Total events	40		52					
Heterogeneity: Chi ² =); 1*= 52%					
Test for overall effect:	. Z = 1.52 (P =	0.13)						
Total (95% Cl)		225		214	100.0%	0.73 [0.57, 0.93]		•
Total events	71		93					
Heterogeneity: Chi ² =	2.96, df = 4 (F	^o = 0.57)); I² = 0%					
Test for overall effect:	Z = 2.56 (P =	0.01)						0.1 0.2 0.5 1 2 5 10 Favours volume targeted Favours pressure limited
Test for subgroup dif	ferences: Not	applicat	ole					r avours volume targeted in avours pressure inflited

Typical relative risk 0.73, 95% CI 0.57 to 0.93

Wheeler 2010

Do Clinical Markers of Barotrauma and Oxygen Toxicity Explain Interhospital Variation in Rates of CLD?



Conclusion: NICU-specific risk of CLD was predominantly associated with the decision to use mechanical ventilation

Van Marter. Pediatrics 2000

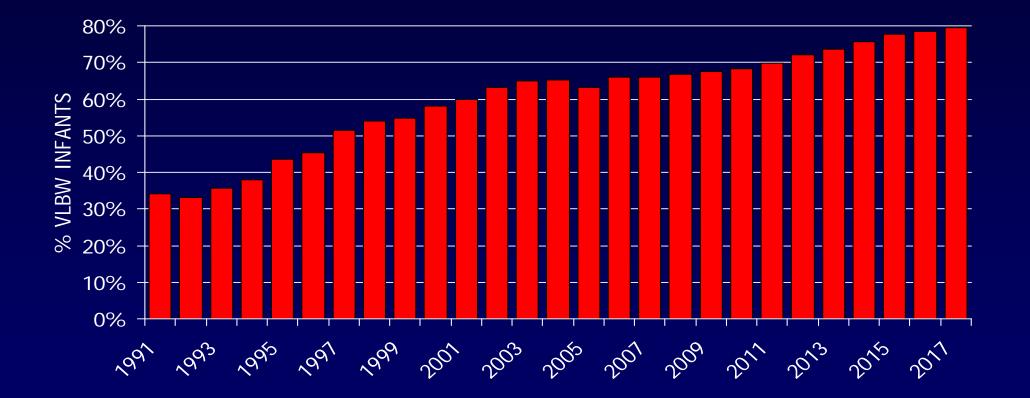
Prophylactic Surfactant Administration vs. Selective Treatment of RDS

Neonatal Mortality

Prophylactic Surfactant Administration vs. Selective Treatment of RDS

Death or BPD at 36 weeks' postmenstrual age

STUDY			Decreased ← Risk → Increased 0.2 0.5 1.0 2.0 4.0					
				1 1 1	1	1 1 1		
STUDIES WITH ROUTINE APP	LICATION OF CPA	\P						
- SUPPORT 2010	1.11 (1.00, 1.23)						
- VON 2010	1.20 (0.92, 1.57	')						
TYPICAL ESTIMATE	1.12 (1.02, 1.24)						
		0.2	0.5	1.0 Diak and	2.0	4.0		
ROJAS 2012			Relative	RISK and	195%			


DELIVERY ROOM PRACTICES IN VLBW INFANTS

DR ETT DR SURFACTANT

Any Nasal Continuous Positive Airway Pressure

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2017

Bronchopulmonary Dysplasia: Evidence for Best Practice

Can we prevent or treat bronchopulmonary dysplasia with specific pharmacologic interventions?

PHARMACOLOGIC INTERVENTIONS AND BRONCHOPULMONARY DYSPLASIA: EVIDENCE FROM RANDOMIZED CONTROLLED TRIALS

EFFECT ON BRONCHOPULMONARY DYSPLASIA (STATUS AT 28 DAYS)

INTERVENTION (N)	Risk Difference (95% CI)	Decreased ← Risk → Increased 0.2 0.5 1.0 2.0 4.0
VITAMIN A (7)	-0.05 (-0.10, 0.00)	\diamond
VITAMIN E (8)	-0.01 (-0.04, 0.03)	
INDOMETHACIN (7)	0.03 (-0.03, 0.09)	<u>←</u>
BRONCHODILATORS (1)	-0.01 (-0.05, 0.02)	
DIURETICS (2)	-0.03 (-0.05,-0.01)	
		0.2 0.5 1.0 2.0 4.0 Relative Risk and 95% CI

PHARMACOLOGIC INTERVENTIONS AND CHRONIC LUNG DISEASE: EVIDENCE FROM RANDOMIZED CONTROLLED TRIALS

EFFECT ON CHRONIC LUNG DISEASE AT 36 WEEKS POSTMENSTRUAL AGE

INTERVENTION (N)	Risk Difference (95% CI)	Dec 0.2	reased 0.5	Risk ➡ 1.0	Incre 2.0	eased 4.0
					I	
VITAMIN A (4)	-0.06 (-0.13, -0.00)		•		
ALPHA 1 PROTEASE INHIBITOR (2)	-0.10 (-0.23, 0.03))				
SUPEROXIDE DISMUTASE (1)	0.00 (-0.21, 0.21)					
						<u> </u>
		0.2	0.5	1.0	2.0	4.0
NEONATAL COCHRANE REVIEW GROUP		Туріса	al Relativ	ve Risk a	and 95	5% CI

The NEW ENGLAND JOURNAL of MEDICINE

Caffeine Therapy for Apnea of Prematurity

Barbara Schmidt, M.D., Robin S. Roberts, M.Sc., Peter Davis, M.D., Lex W. Doyle, M.D., Keith J. Barrington, M.D., Arne Ohlsson, M.D., Alfonso Solimano, M.D., and Win Tin, M.D. for the Caffeine for Apnea of Prematurity Trial Group

N Engl J Med 2006; 354:2112-2121May 18, 2006DOI: 10.1056/NEJMoa054065

Caffeine

The CAP Trial: Schmidt and coworkers

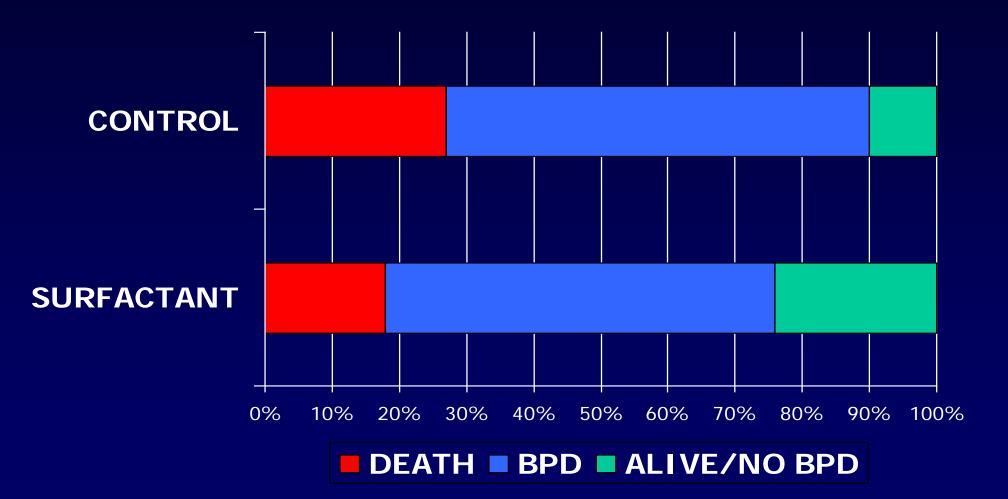
Outcome	Caffeine	Control	Adjusted OR (95% CI)
Initial Report BPD Death	36.3% 5.2%	46.9% 5.5%	0.64 (0.52 to 0.78) 0.96 (0.64 to 1.44)
2 Year Report CP Death or Disability	4.4% 40.2%	7.3% 46.2%	0.59 (0.39 to 0.89) 0.79 (0.65 to 0.92)
5 Year Report Death or Disability	21.1%	24.8%	0.86 (0.67 to 1.09)

Caffeine: Who should I treat?

Effect on Bronchopulmonary Dysplasia

Indication	<u>Caffeine</u>	<u>Control</u>	<u>Odds ratio (95% CI)</u>
Apnea treatment	107/413	141/392	0.62 [0.46, 0.84]
Apnea prophylaxis	84/226	94/211	0.74 [0.50, 1.08]
Pre-extubation	158/322	212/350	0.63 [0.46, 0.85]

0.65 [0.54, 0.78]


SURFACTANT THERAPY: EVIDENCE FROM RANDOMIZED CONTROLLED TRIALS

EFFECT ON BRONCHOPULMONARY DYSPLASIA

TYPES OF STUDIES (N)	TypicalRisk Difference $(95\% CI)$ 0.2 0.5 1.0 2.0 4.0
PROPHYLACTIC SURFACTANT	
SYNTHETIC SURFACTANT (4)	0.01 (-0.04, 0.06)
ANIMAL DERIVED SURFACTANT (7)	-0.04 (-0.09, 0.03)
RESCUE SURFACTANT	
SYNTHETIC SURFACTANT (5)	-0.09 (-0.12, -0.06)
ANIMAL DERIVED SURFACTANT (9)	-0.02 (-0.09, 0.04)
Soll 1997	0.2 0.5 1.0 2.0 4.0 Typical Relative Risk and 95% CI

Surfactant therapy and bronchopulmonary dysplasia

Outcome at 28 days

Liechty EA. Pediatrics 1991

SURFACTANT THERAPY: EVIDENCE FROM RANDOMIZED CONTROLLED TRIALS

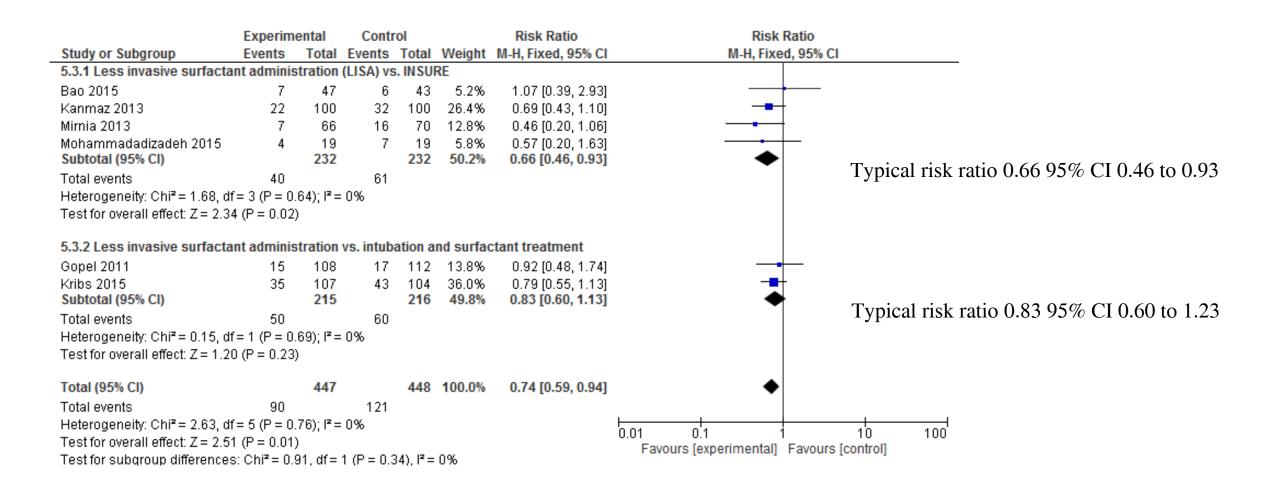
EFFECT ON BRONCHOPULMONARY DYSPLASIA OR DEATH

TYPES OF STUDIES (N)	Typical Risk Difference (95% CI)	Decreased \leftarrow Risk \rightarrow Increased 0.2 0.5 1.0 2.0 4.0
PROPHYLACTIC SURFACTANT		
SYNTHETIC SURFACTANT (4)	-0.04 (-0.10, 0.01)	
ANIMAL DERIVED SURFACTANT (7)	-0.10 (-0.16, -0.04)	
RESCUE SURFACTANT		
SYNTHETIC SURFACTANT (4)	-0.08 (-0.11, -0.05)	
ANIMAL DERIVED SURFACTANT (10)	-0.14 (-0.21, -0.07)	
From the Cochrane Library		0.2 0.5 1.0 2.0 4.0 Typical Relative Risk and 95% CI

Neonatology

Novel Surfactant Application Techniques: Will they change outcome?

Whittney D. Barkhuff, MD, Roger F. Soll, MD


Thin Catheter Administration

Thin Catheter Administration

Less Invasive Surfactant Administration Effect on Bronchopulmonary Dysplasia or Death

Typical risk ratio 0.74 95% CI 0.59 to 0.94; Typical risk difference -0.07 95% CI -0.12 to -0.02

Postnatal Steroid Therapy: Systematic Overview

Early Steroid Treatment:

- before or at 7 Days
- studies 30
- enrolled infants 3750

Late Steroid Treatment:

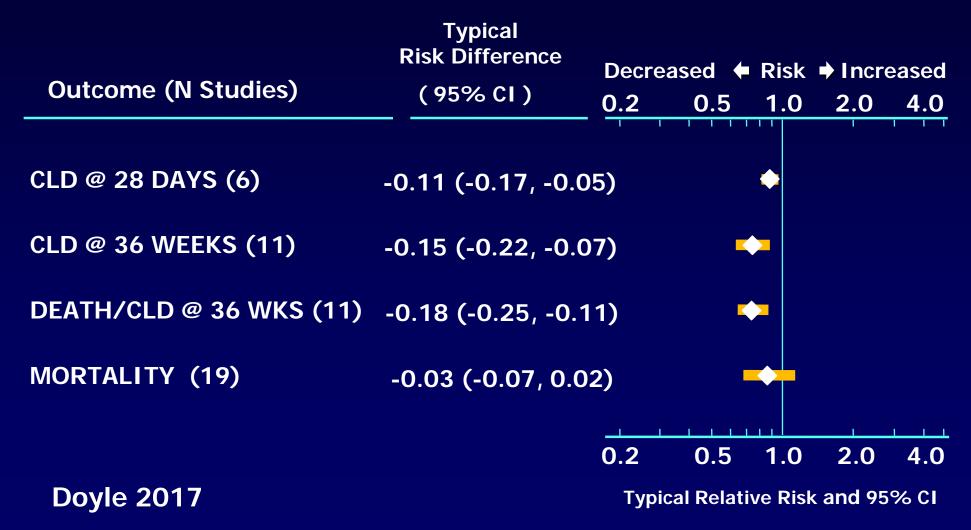
- after 7 Days
- studies 21
- enrolled infants 1424

Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database of Systematic Reviews 2014, Issue 5. Art. No.: CD001146. DOI: 10.1002/14651858.CD001146.pub4.

Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database of Systematic Reviews 2017, Issue 10. Art. No.: CD001145. DOI: 10.1002/14651858.CD001145.pub4

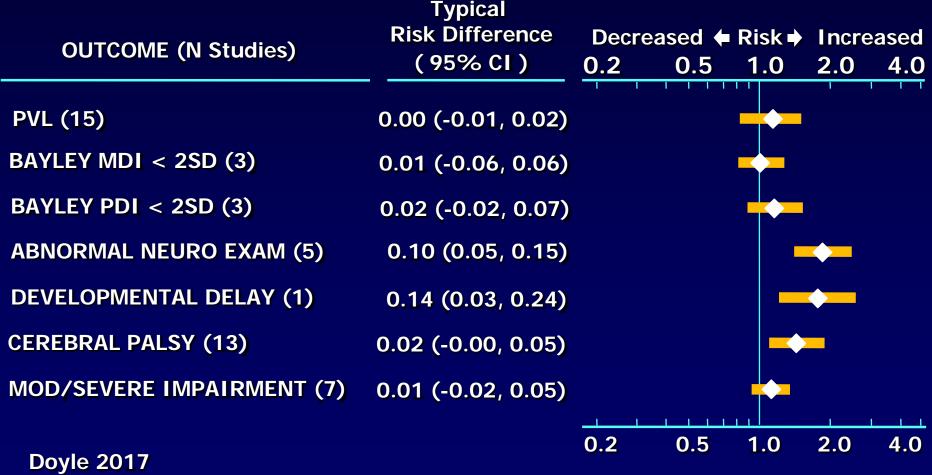
EARLY (≤ 7 DAYS) POSTNATAL STEROID THERAPY

META-ANALYSIS OF 30 RANDOMIZED CONTROLLED TRAILS


Outcome (N Studies)	Typical Risk Difference (95% CI)	Decre 0.2	ased ← 0.5	Risk 1.0	Incre	eased
CLD @ 28 DAYS (17)	-0.07 (-0.10,-0.0)3)		•	I	
CLD @ 36 WEEKS (24)	-0.07 (-0.09, -0.0	04)				
DEATH/CLD @ 36 WKS (25)	-0.06 (-0.09, -0.0	03)		•		
MORTALITY (28)	-0.01 (-0.03, 0.0)1)		•		
		0.2	0.5	1.0	2.0	4.0
Dovle 2017						

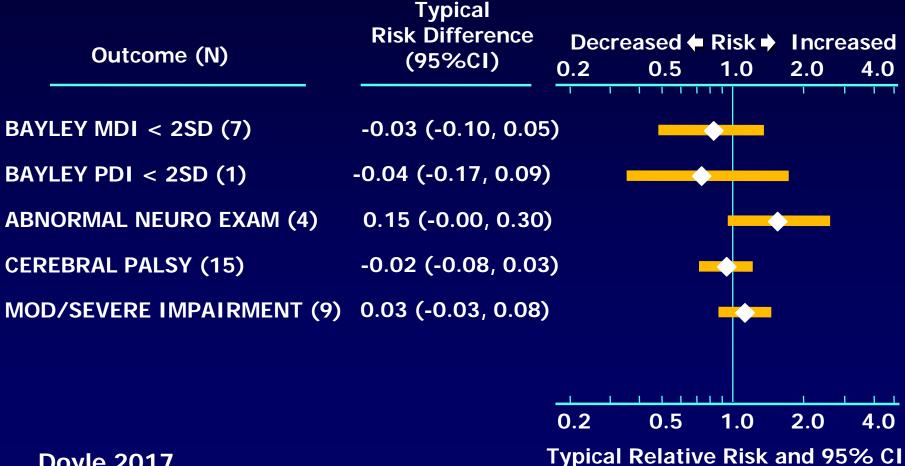
Typical Relative Risk and 95% CI

Doyle 2017


LATE (> 7 DAYS) POSTNATAL STEROID THERAPY

META-ANALYSIS OF 21 RANDOMIZED CONTROLLED TRAILS

EARLY (≤ 7 DAYS) POSTNATAL STEROID THERAPY

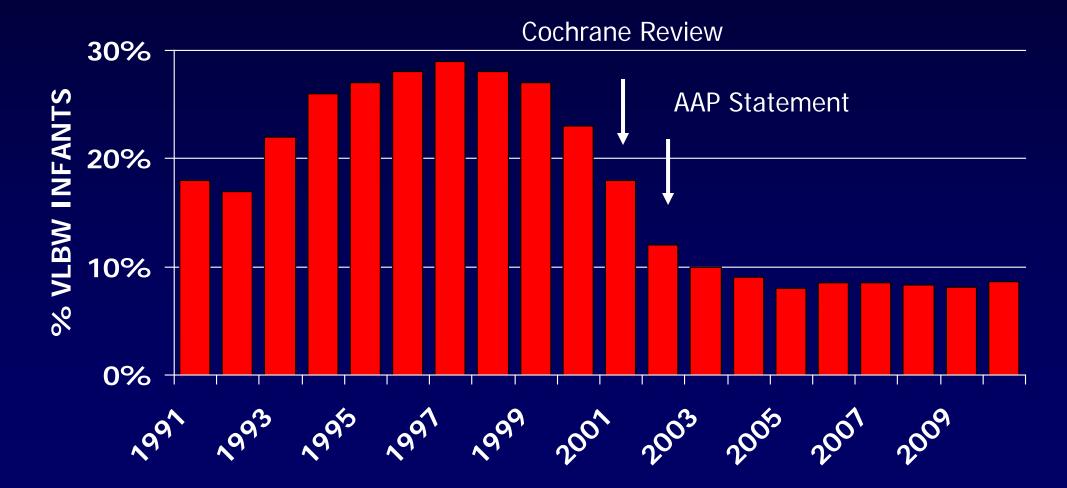

NEURODEVELOPMENTAL OUTCOME IN SURVIVORS

Typical Relative Risk and 95% CI

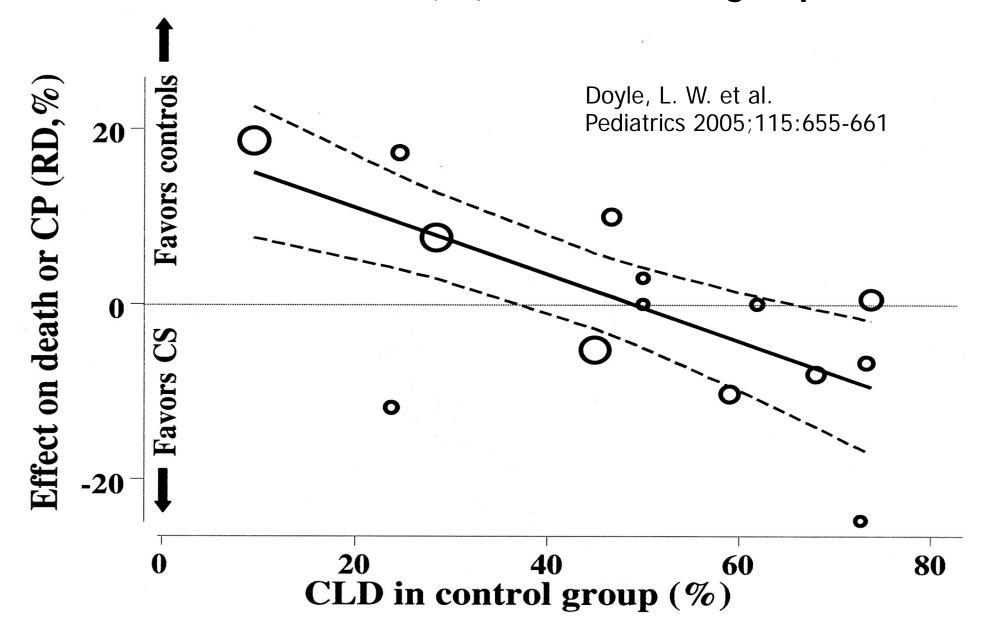
LATE (> 7 DAYS) POSTNATAL STEROID THERAPY

NEURODEVELOPMENTAL OUTCOME IN SURVIVORS

Doyle 2017


POSTNATAL CORTICOSTEROIDS TO TREAT OR PREVENT CHRONIC LUNG DISEASE IN PRETERM INFANTS

RECOMMENDATIONS FROM THE COMMITTEE ON THE FETUS AND NEWBORN 2002


On the basis of limited short-term benefits, the absence of long-term benefits, and the number of serious short-term and long-term complications, the routine use of systemic dexamethasone for the prevention or treatment of chronic lung disease in infants with very low birth weight is not recommended.

POSTNATAL CORTICOSTEROID USE IN VLBW INFANTS

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2010

Risk Difference (%) for Death or CP among all participants vs. rate of CLD (%) in the control group

Early Inhaled Corticosteroids For The Prevention Of Bronchopulmonary Dysplasia In Extremely Preterm Infants: The Neonatal European Study Of Inhaled Steroids (Neurosis)

Objective: To determine the effect of early use of inhaled budesonide in infants with gestational ages of 23 0/7 to 27 6/7 weeks requiring any form of positive pressure support on survival without BPD at 36 weeks' gestational age.

Methods: Randomized controlled trial. Budesonide or placebo were continued until infants were either off supplementary oxygen and positive pressure support or had reached a gestational age of 32 0/7 weeks regardless of their ventilator status. The primary outcome was death before 36 weeks of gestational age or survival with BPD, defined according to the physiological definition.

Early Inhaled Corticosteroids For The Prevention Of Bronchopulmonary Dysplasia In Extremely Preterm Infants: The Neonatal European Study Of Inhaled Steroids (Neurosis)

Primary Outcome	Placebo	Budesonide	Relative Risk (95% CI)	Relative Risk Adjusted for GA (95% CI)	P Value	Odds Ratio Adjusted for GA, birth weight, caffeine, mech. ventilation (95% CI)
Primary Outcome	194/419 (46.3)	175/437 (40.0)	0.86 (0.74-1.01)	0.86 (0.75-1.00)	0.053	0.71 (0.53-0.97)
Components of primary of	outcome					
Death at <36 wk of gestational age	57/419 (13.6)	74/437 (16.9)	1.24 (0.91-1.71)	1.24 (0.91-1.69)	0.165	
Survival with BPD	138/363 (38.0)	101/363 (27.8)	0.73 (0.59-0.90)	0.74 (0.60-0.91)	0.004	

D Bassler et al. Arch Dis Child 2014;99:A1-A2

NITRIC OXIDE FOR RESPIRATORY FAILURE IN PRETERM INFANTS

Study	Treatment n/N	Control n/N	Relative Risk (Fixed) 95% Cl	Weight (%)	Relative Risk (Fixed) 95% Cl
01 Studies with entry be Dani 2006	fore three days ba: 10/20	sed on oxygenation 18/20	_	5.5	0.56 [0.35, 0.88]
Hascoet 2005	33/57	41/74	_	10.9	1.04 [0.77, 1.41]
INNOVO 2005	49/55	48/53	+	14.9	0.98 [0.87, 1.12]
Kinsella 1999	37/48	29/32		10.6	0.85 [0.70, 1.03]
Mercier 1999	18/40	24/45		6.9	0.84 [0.54, 1.31]
Van Meurs 2005	167/210	168/210		51.2	0.99 [0.90, 1.09]
Subtotal (95% CI) Total events: 314 (Treat	430	434	•	100.0	0.95 [0.88, 1.02]
Test for heterogeneity of Test for overall effect z	hi-square=8.31 df=				
02 Studies with entry af Ballard 2006	ter three days base 165/294	d on BPD risk 182/288	<mark></mark>	90.2	0.89 [0.78, 1.02]
Subhedar 1997	20/20	21/22	+	9.8	1.05 [0.96, 1.15]
Subtotal (95% CI) Total events: 185 (Treat Test for heterogeneity o Test for overall effect z	hi-square=10.15 df:		•	100.0	0.90 [0.80, 1.02]
03 Studies of routine us Kinsella 2006	e in intubated prete 282/398	m infants 295/395		81.8	0.95 [0.87, 1.03]
Schreiber 2003	51/105	65/102		18.2	0.76 [0.60, 0.97]
Subtotal (95% CI) Total events: 333 (Treat Test for heterogeneity o	hi-square=2.83 df=		•	100.0	0.91 [0.84, 0.99]
Test for overall effect z	=2.13 p=0.03			<u>.</u>	
			0.2 0.5 1 2 Favours treatment Favours o	5 control	

EFFECT ON DEATH OR BPD AT 36 WEEKS PMA

Use of Inhaled Nitric Oxide in Preterm Infants

The results of randomized controlled trials, traditional meta-analyses, and an individualized patient data meta-analysis study indicate that neither rescue nor routine use of iNO improves survival in preterm infants with respiratory failure (Evidence quality, A; Grade of recommendation, strong).

The preponderance of evidence does not support treating preterm infants who have respiratory failure with iNO for the purpose of preventing/ameliorating BPD, severe intraventricular hemorrhage, or other neonatal morbidities (Evidence quality, A; Grade of recommendation, strong).

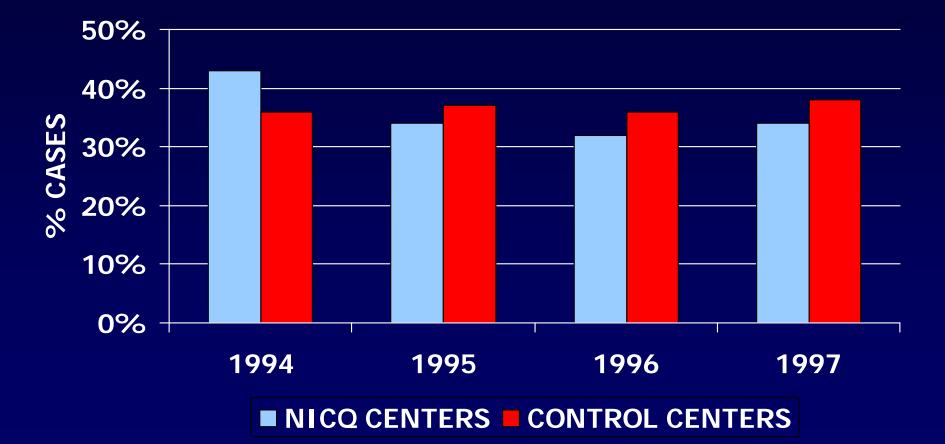
Pediatrics 2014

Bronchopulmonary Dysplasia: Evidence for Best Practice

QUALITY IMPROVEMENT

VERMONT OXFORD NETWORK NIC/Q PROJECT

- Performance Feedback
- Quality Training
- Collaborative Learning
 - Site Visits and Benchmarking
 - Meetings, Listservs, Conference Calls


SUPPORTED BY A GRANT FROM THE DAVID AND LUCILE PACKARD FOUNDATION

CLD: Potentially Better Practices

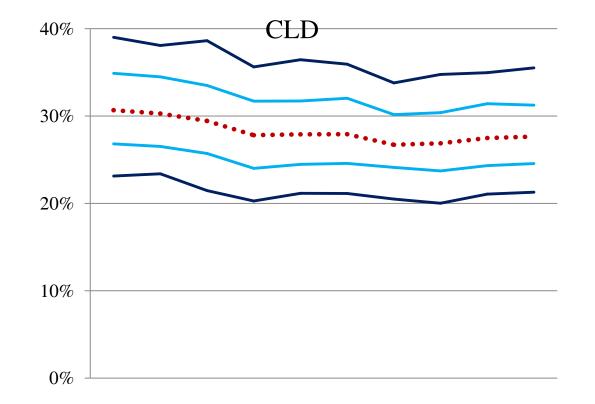
- Promote the use of antenatal steroids
- Prophylactic surfactant administration for infants with birth weight < 1000 grams
- Prophylactic indomethacin for infants < 1000 grams
- Stabilization on SIMV or HOFV
- Participate in RCT to assess effect of early steroids
- Restrict fluid intake
- Permissive hypercarbia
- Post-extubation NCPAP
- Developmentally supportive care

NICQ PROJECT: CHRONIC LUNG DISEASE

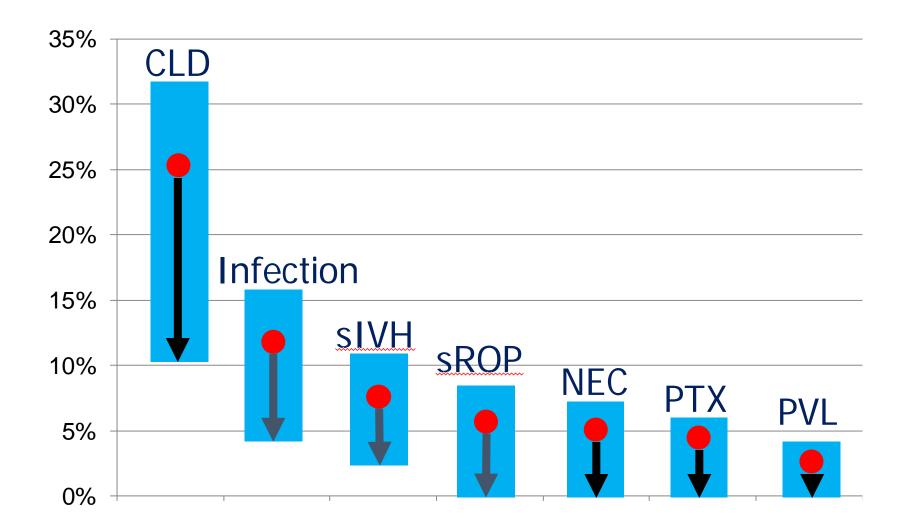
OXYGEN AT 36 WEEKS GESTATION

HORBAR J. PEDIATRICS 2001

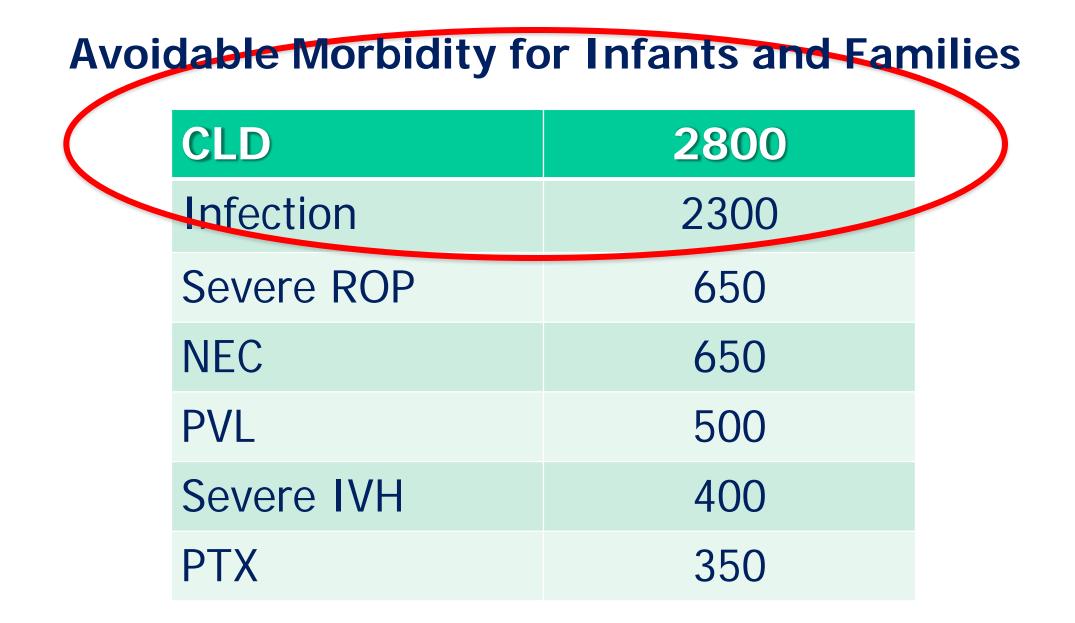
Chronic Lung Disease in VLBW Infants


VERMONT OXFORD NETWORK ANNUAL REPORTS 2000-2017

JAMA Pediatrics


Chronic Lung Disease 2005 to 2014

Risk-Adjusted Rates of Outcomes in the NICU at the 10th, 25th, 50th, 75th, and 90th Percentiles, 2005-2014, With the Dark Blue, Light Blue, and Dotted Red Curves Indicating 10th/90th, 25th/75th, and 50th Percentiles, Respectively



Horbar JD, Edwards EM, Greenberg LT, et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr. Published online January 9, 2017. doi:10.1001/jamapediatrics.2016.4396

Morbidities

60,000 VLBW Infants at 917 NICUs

Risk adjusted estimates based on 917 NICUs in 2013