

Why we don't always do what trials tell us to do!

Roger F. Soll, M.D. H. Wallace Professor of Neonatology, University of Vermont President, Vermont Oxford Network Coordinating Editor, Cochrane Neonatal

roger.soll@uvmhealth.org

Why we don't always do what trials tell us to do!

Disclosure

Dr. Soll is President of The Vermont Oxford Network and Coordinating Editor of Cochrane Neonatal

No other relevant financial issues to disclose.

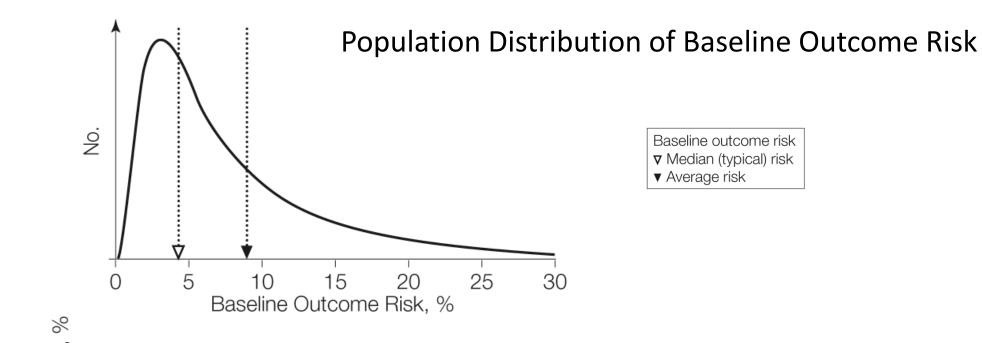
Evidence Based Medicine

Best Available Clinical Evidence

Improvement Formula

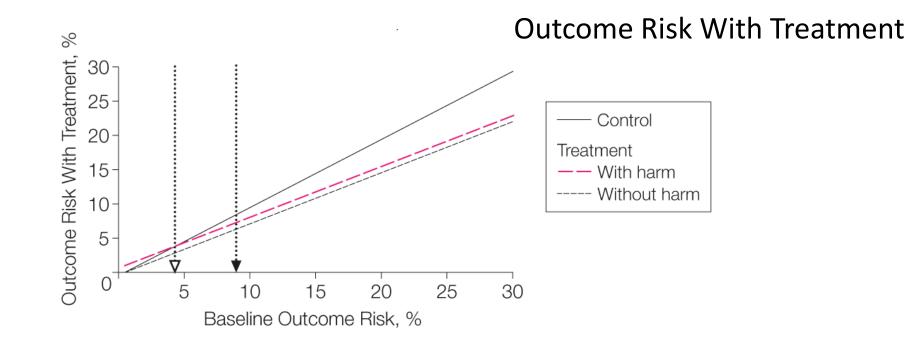
Do What? Evidence Based Medicine Do How? Evidence Based Practice

Batalden, PB, Davidoff F. Qual Saf Health Care 2007;16:2-3


Commentary

September 12, 2007

Limitations of Applying Summary Results of Clinical Trials to Individual Patients The Need for Risk Stratification


David M. Kent, MD, MS; Rodney A. Hayward, MD JAMA. 2007;298(10):1209-1212. doi:10.1001/jama.298.10.1209

Patients enrolled in clinical trials often have greatly different baseline risks for the outcome of interest. The risk distribution is often skewed; a relatively small group of high risk patients with multiple risk factors account for a large number of the outcomes and the mean risk might be considerably higher than the risk in the typical (median) patient

A constant relative risk reduction (25% in this case) leads to increasing benefits as baseline risk increases; treatment and control outcome rates progressively diverge at higher baseline risks.

When a therapy is associated with even a small amount of treatment-related harm, low-risk patients are unlikely to benefit at all.

Patients enrolled in clinical trials often have greatly different baseline risks for the outcome of interest.....

Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants.

Cleminson J, Austin N, McGuire W. Cochrane Database of Systematic Reviews 2015, Issue 10. Art. No.: CD003850. DOI: 10.1002/14651858.CD003850.pub5.

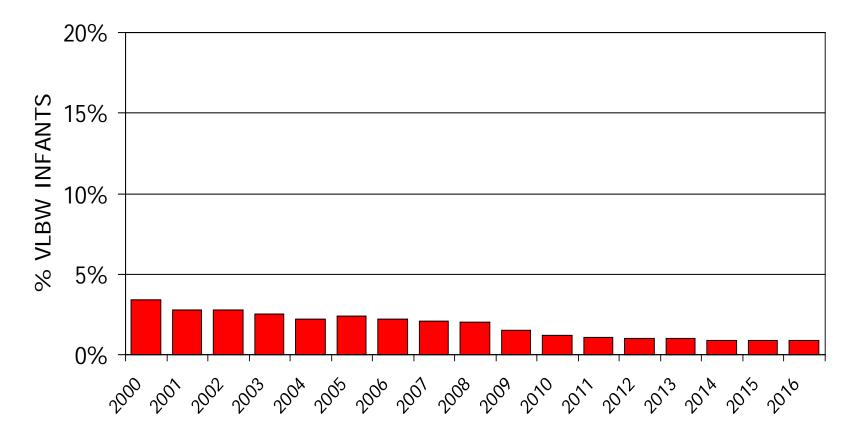
Identified 15 eligible trials enrolling a total of 1690 infants.

Ten trials (1371 infants) compared systemic antifungal prophylaxis versus placebo or no drug.

These trials were generally of good methodological quality.

Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants.

Invasive Fungal Infection (relative risk)


	Systemic antif	ungal	Placebo/c	ontrol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Kicklighter 2001	2	53	2	50	2.0%	0.94 [0.14, 6.44]	2001	
Kaufman 2001	1	50	13	50	12.5%	0.08 [0.01, 0.57]	2001	
Cabrera 2002	0	6	1	5	1.6%	0.29 [0.01, 5.79]	2002	
Parikh 2007	16	60	15	60	14.4%	1.07 [0.58, 1.96]	2007	- - -
Manzoni 2007a	7	216	14	106	18.1%	0.25 [0.10, 0.59]	2007	_ _
Kim 2010	2	28	5	27	4.9%	0.39 [0.08, 1.82]	2010	
Arrieta 2010	0	20	1	20	1.4%	0.33 [0.01, 7.72]	2010	
Aydemir 2011a	3	93	15	91	14.6%	0.20 [0.06, 0.65]	2011	
Benjamin 2014	8	188	15	173	15.0%	0.49 [0.21, 1.13]	2014	
Kirpal 2015	8	38	16	37	15.6%	0.49 [0.24, 1.00]	2015	
Total (95% CI)		752		619	100.0%	0.43 [0.31, 0.59]		◆
Total events	47		97					
Heterogeneity: Chi ² = 1	15.59, df = 9 (P =	0.08); I ²	= 42%					0.01 0.1 1 10 10
Test for overall effect:	Z = 5.16 (P < 0.0	0001)						0.01 0.1 1 10 10(Favours antifungal Favours placebo/con
								ravous annungar ravous placeborcon

Typical relative risk 0.43, 95% CI 0.31 to 0.59 Typical risk difference -0.09, 95% CI -0.12 to -0.06

Fungal Sepsis

Vermont Oxford Network Annual Reports 2000-2016

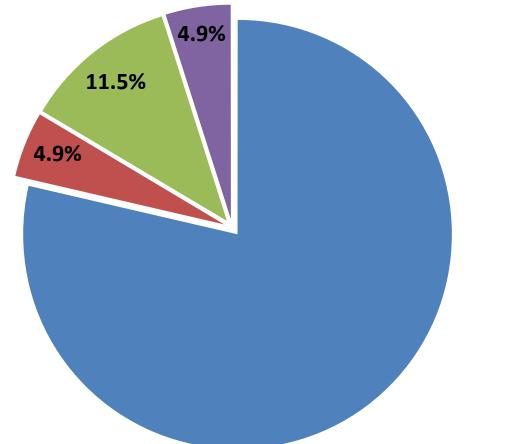
Rates of Fungal Sepsis by Gestational Age Category Vermont Oxford Network 2016

GA Category	<u>N</u>	<u>Mean (%)</u>	<u>Q1</u>	<u>Q3</u>
< 24 Weeks	2,249	3.9%	0.0%	0.0%
24 to 26 Weeks	13,212	1.9%	0.0%	0.0%
27 to 29 Weeks	22,625	0.6%	0.0%	0.0%
30 to 32 Weeks	16,240	0.3%	0.0%	0.0%
> 32 Weeks	4,820	0.1%	0.0%	0.0%
ALL INFANTS	59,146	0.9%	0.0%	0.7%

"It's hard to improve on zero!"

Prophylactic antifungal therapy

Authors' conclusions


Prophylactic systemic antifungal therapy reduces the incidence of invasive fungal infection in very preterm or very low birth weight infants.

This finding should be interpreted and applied cautiously since the incidence of invasive fungal infection was very high in the control groups of many of the included trials.

Meta-analysis does not demonstrate a statistically significant effect on mortality. There are currently only limited data on the long-term neurodevelopmental consequences for infants exposed to this intervention. In addition, there is a need for further data on the effect of the intervention on the emergence of organisms with antifungal resistance.

Of infants on antibiotics.... 22% were being treated "prophylactically"

Other indications

Prophylaxis for surgery

 Prophylaxis for fungal infection
Prophylaxis for UTI

Risk factors for fungal infection in preterm infants

Risk factor	Odds Ratio (95% CI)
Gestational age < 25 weeks	4.15 (3.12 to 6.12)
Male	1.28 (1.01 to 1.62)
Central catheter	3.94 (1.48 to 12.3)
Broad-spectrum antibiotics in week before culture	1.77 (1.33 to 2.29)
Cephalosporin use by day of life 3	1.77 (1.31 to 2.38)
H2 blockers	2.44 (1.11 to 5.29)

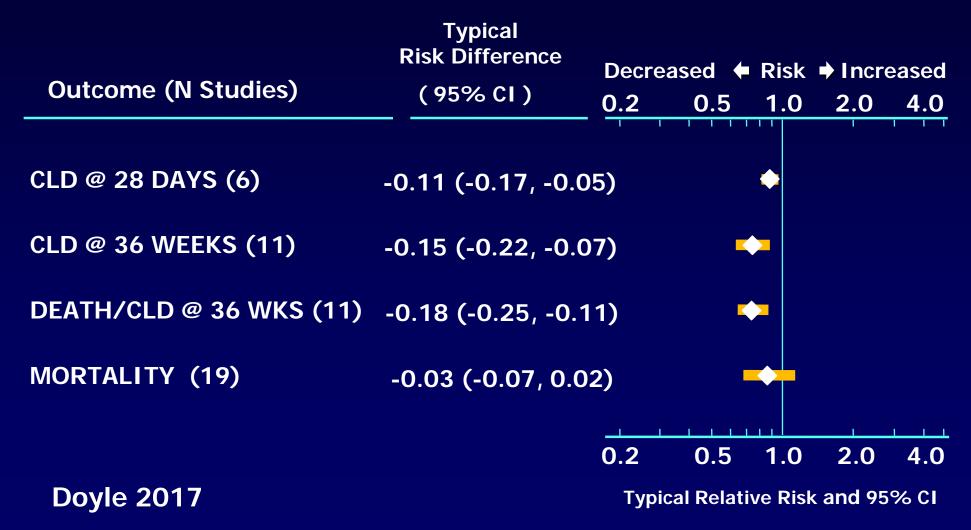
Hsieh, Emily, P. Brian Smith, and Daniel K. Benjamin. "Neonatal Fungal Infections: When to Treat?" Early human development 88.Suppl 2 (2012): S6–S10. PMC.

A constant relative risk reduction leads to increasing benefits as baseline risk increases; treatment and control outcome rates progressively diverge at higher baseline risks.

When a therapy is associated with even a small amount of treatmentrelated harm, low-risk patients are unlikely to benefit at all.

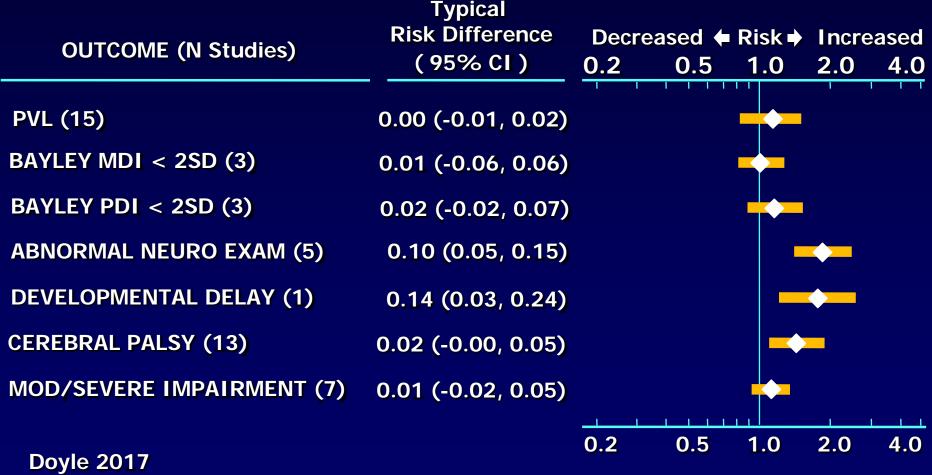
EARLY (≤ 7 DAYS) POSTNATAL STEROID THERAPY

META-ANALYSIS OF 32 RANDOMIZED CONTROLLED TRAILS


Outcome (N Studies)	Typical Risk Difference (95% CI)	Decre	ased ← 0.5	Risk • 1.0	Incre 2.0	eased
CLD @ 28 DAYS (17)	-0.07 (-0.10,-0.0)3)		•		
CLD @ 36 WEEKS (24)	-0.07 (-0.09, -0.0	04)	K			
DEATH/CLD @ 36 WKS (25)	-0.06 (-0.09, -0.0	03)		•		
MORTALITY (30)	-0.01 (-0.03, 0.0)1)		•		
		0.2	0.5	1.0	2.0	4.0
Dovle 2017						

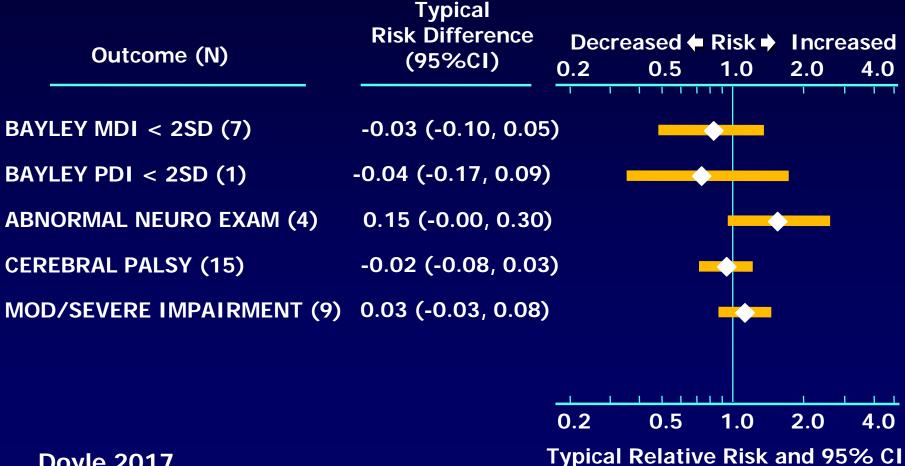
Typical Relative Risk and 95% CI

Doyle 2017


LATE (> 7 DAYS) POSTNATAL STEROID THERAPY

META-ANALYSIS OF 21 RANDOMIZED CONTROLLED TRAILS

EARLY (≤ 7 DAYS) POSTNATAL STEROID THERAPY


NEURODEVELOPMENTAL OUTCOME IN SURVIVORS

Typical Relative Risk and 95% CI

LATE (> 7 DAYS) POSTNATAL STEROID THERAPY

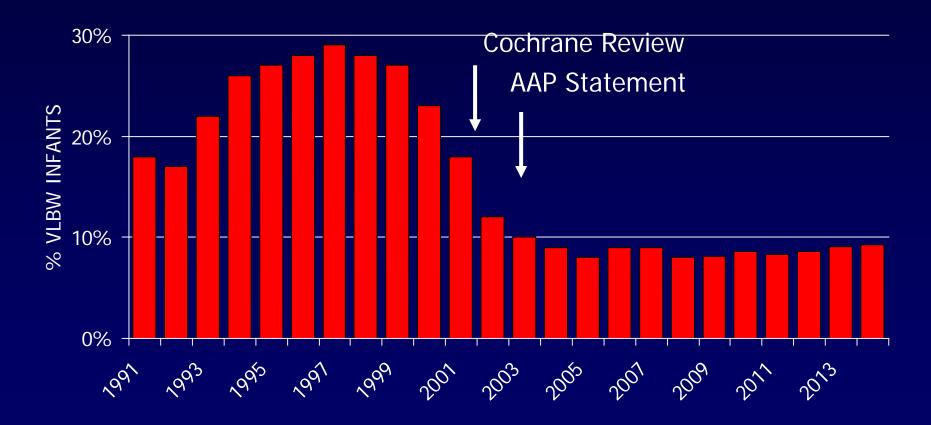
NEURODEVELOPMENTAL OUTCOME IN SURVIVORS

Doyle 2017

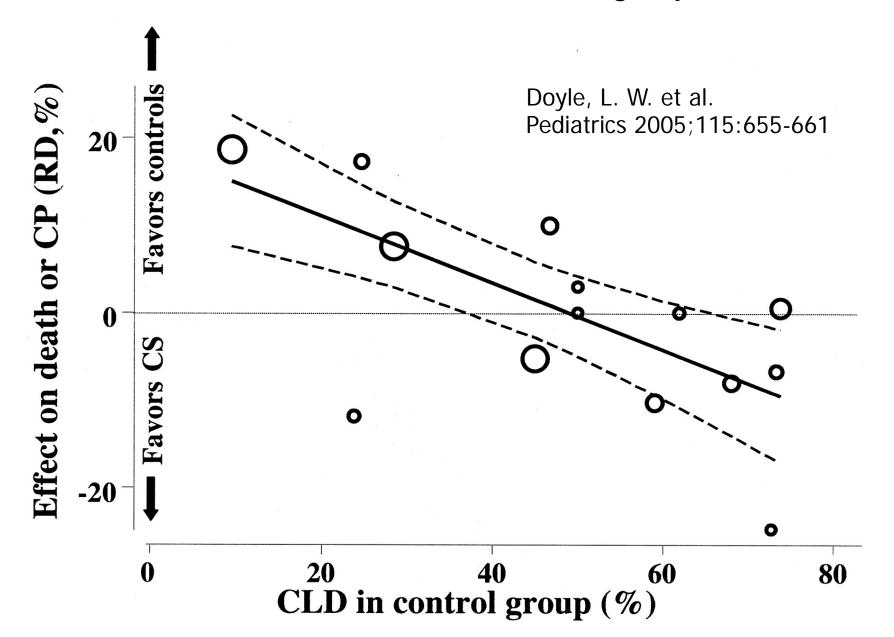
POSTNATAL CORTICOSTEROIDS TO TREAT OR PREVENT CHRONIC LUNG DISEASE IN PRETERM INFANTS

RECOMMENDATIONS FROM THE COMMITTEE ON THE FETUS AND NEWBORN 2002

On the basis of limited short-term benefits, the absence of long-term benefits, and the number of serious short-term and long-term complications, the routine use of systemic dexamethasone for the prevention or treatment of chronic lung disease in infants with very low birth weight is not recommended.


POSTNATAL CORTICOSTEROIDS TO TREAT OR PREVENT CHRONIC LUNG DISEASE IN PRETERM INFANTS

RECOMMENDATIONS FROM THE COMMITTEE ON THE FETUS AND NEWBORN 2002


Outside the context of a randomized controlled trial, the use of corticosteroids should be limited to exceptional clinical circumstances (e.g., an infant on maximal ventilatory and oxygen support). In those circumstances, parents should be fully informed about the known short- and long-term risks and agree to treat.

Postnatal Corticosteroid Use in VLBW Infants

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2014

Risk Difference (%) for Death or CP among all participants vs. rate of CLD (%) in the control group

Competing Risks

Askie LM, Darlow BA, Davis PG, Finer N, Stenson B, Vento M, Whyte R.

Cochrane Database of Systematic Reviews 2017, Issue 4. Art. No.: CD011190. DOI: 10.1002/14651858.CD011190.pub2.

NeOProM

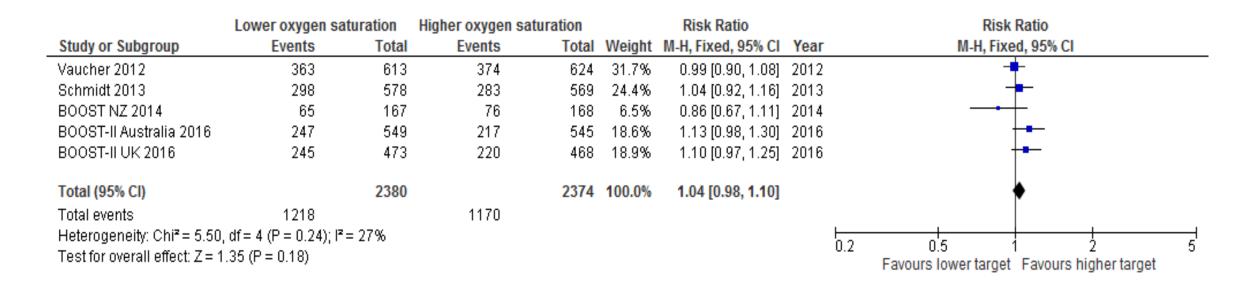
Askie et al. BMC Pediatrics 2011, 11:6 http://www.biomedcentral.com/1471-2431/11/6

STUDY PROTOCOL

NeOProM: Neonatal **O**xygenation **Pro**spective **M**eta-analysis Collaboration study protocol

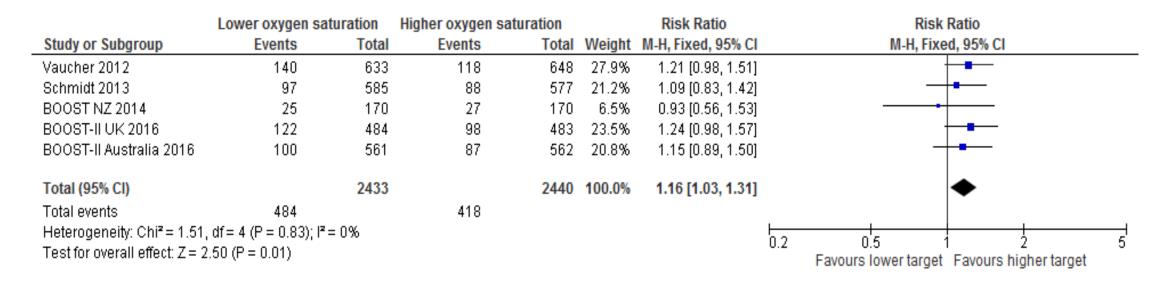
Lisa M Askie^{1*}, Peter Brocklehurst², Brian A Darlow³, Neil Finer⁴, Barbara Schmidt^{5,6}, William Tarnow-Mordi^{7,8}, for the NeOProM Collaborative Group¹

Characteristics of randomized trials included in the NeoProM Collaboration

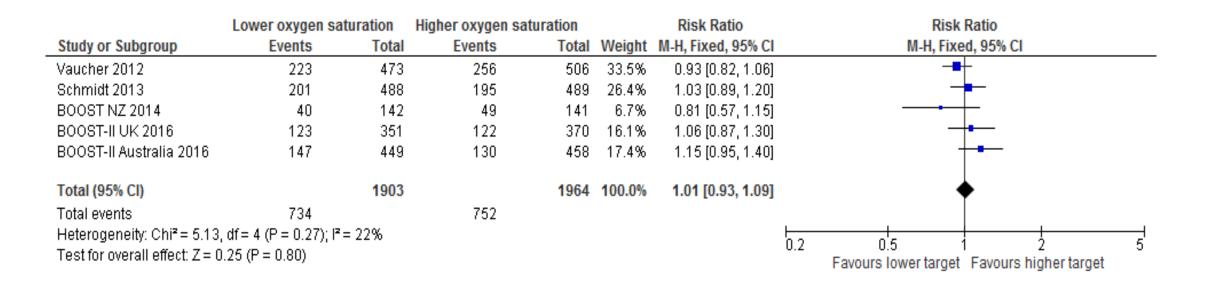

Trial acronym	BOOST II-Australia	BOOST II-UK	BOOST-NZ	SUPPORT	сот	
Registration number	ACTRN12605000055606	ISRCTN00842661	ACTRN12605000253606	NCT00233324	ISRCTN62491227	
Planned sample size	1200	1200	320	1310	1200	
Countries of recruitment	Australia	United Kingdom	New Zealand	United States	Canada, USA, Argentina, Germany, Israel, Finland	
Participants	Infants < 28 wks gestation inborn or outborn < 24 hrs old	Infants < 28 wks gestation < 12 hrs old (24 hrs if outborn)	Infants < 28 wks gestation inborn or outborn < 24 hrs old	Infants 24-27 wks gestation < 2 hrs old	Infants 23 0/7-27 6/7 wks gestation < 24 hrs old	
Masked?	Yes	Yes	Yes	Yes	Yes	
Intervention	Lower oxygen saturation (85%-89%)	Lower oxygen saturation (85%-89%)	Lower oxygen saturation (85%-89%)	Lower oxygen saturation (85%-89%)	Lower oxygen saturation (85%-89%)	
Comparator	Higher oxygen saturation (91%-95%)	Higher oxygen saturation (91%-95%)	Higher oxygen saturation (91%-95%)	Higher oxygen saturation (91%-95%)	Higher oxygen saturation (91%-95%)	
Intervention & comparator duration	Oximeter applied asap after admission to NICU, continued for minimum 2 wks. Thereafter continued until 36 wks corrected age or SpO ₂ > 96% in room air for 95% of time over 3 days.	Oximeter applied from randomisation until postmenstrual age (PMA) of 36 wks or until baby is breathing air. All monitoring at any time prior to 36 wks to be done using study oximeter. BPD defined at 36 wks using a physiological test.	Oximeter applied asap after admission to NICU, continued for minimum 2 wks. Thereafter continued until 36 wks corrected age or SpO ₂ > 96% in room air for 95% of time over 3 days.	Oximeter applied within 2 hrs following admission to NICU until infant has been in room air for 72 hrs or until 36 wks corrected age, assessed by physiologic oxygen test.	Oximeter applied from day of birth until a minimum 36 wks PMA. If breathing room air without any form of respiratory assistance from 35 wks PMA onward, study oximetry discontinued at a 36 wks PMA If receiving any form of respiratory assistance and/or oxygen therapy from 35 wks PMA onward study oximetry continues until 40 wks PMA Study oximetry stopped at any time before 40 wks PMA if baby discharged home (with or without respiratory assistance	

and/or oxygen).

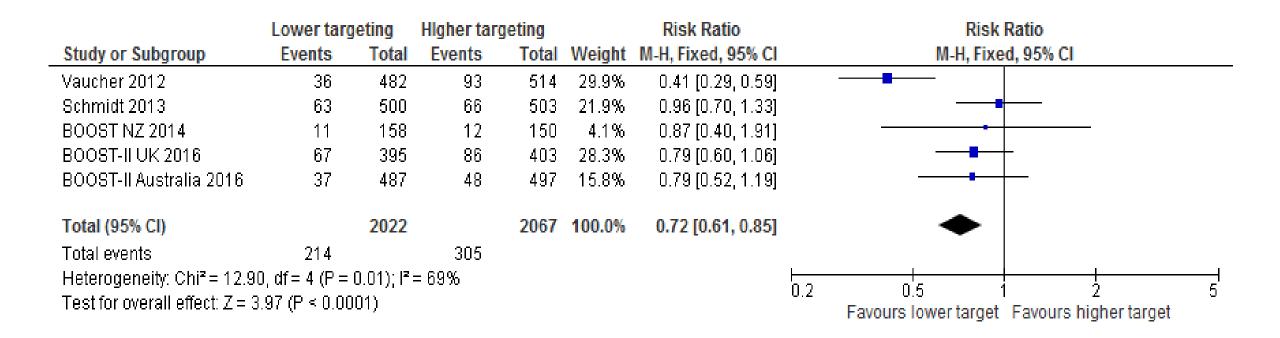
Results:


- Five trials, which together enrolled 4965 infants, were eligible for inclusion.
- The investigators of these five trials had prospectively planned to combine their data as part of the NeOProM (Neonatal Oxygen Prospective Meta-analysis) Collaboration.

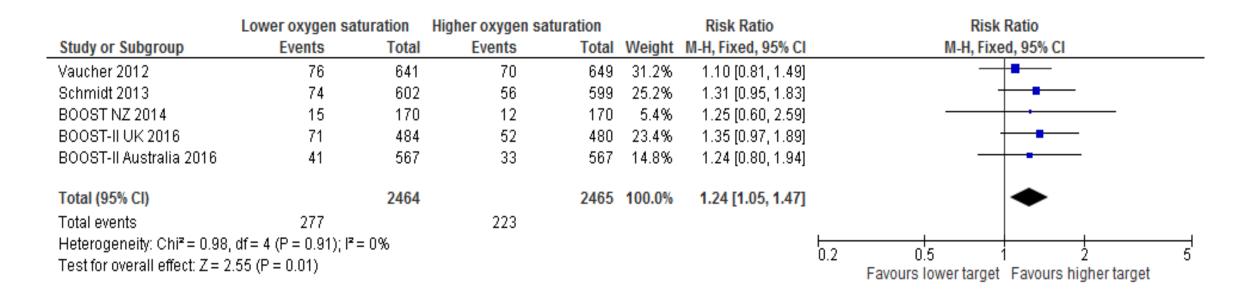
Effect on Death or Major Disability to 18 to 24 months


Typical RR 1.04 (95% CI 0.98 to 1.10)

Effect on Death to 18 to 24 months


Typical RR 1.16 (95% CI 1.03 to 1.31) Typical RD 0.03 (95% CI 0.01 to 0.05)

Effect on Major Disability to 18 to 24 months


Typical RR 1.01 (95% CI 0.93 to 1.09)

Effect on Severe Retinopathy of Prematurity

Typical RR 0.72 (95% CI 0.61 to 0.85) Typical RD -0.04 (95% CI -0.06 to -0.02)

Effect on Necrotizing Enterocolitis

Typical RR 1.24 (95% CI 1.05 to 1.47) Typical RD 0.02 (95% CI 0.01 to 0.04)

Author's Conclusions:

In extremely preterm infants, targeting lower (85% to 89%) SpO₂ compared to higher (91% to 95%) SpO₂ had no significant effect on the composite outcome of death or major disability or on major disability alone, including blindness, but increased the average risk of mortality by 28 per 1000 infants treated.

The trade-offs between the benefits and harms of the different oxygen saturation target ranges may need to be assessed within local settings (e.g. alarm limit settings, staffing, baseline outcome risks) when deciding on oxygen saturation targeting policies.

"The tradeoff between the potential benefits and risks of lower versus higher saturations may not be the same in each nursery."

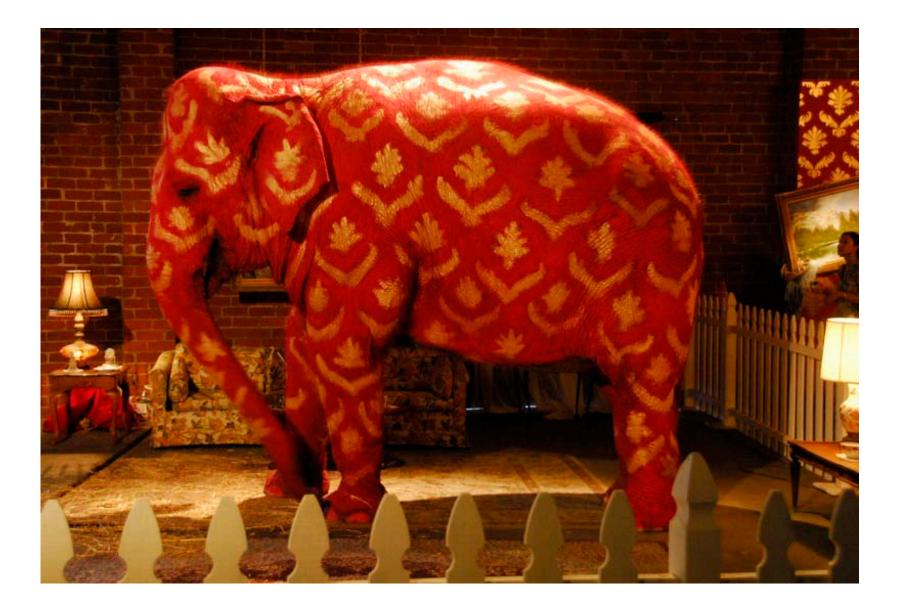
Schmidt B, Whyte RK, Roberts RS. J Pediatr. 2014;165:6-8.

Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants

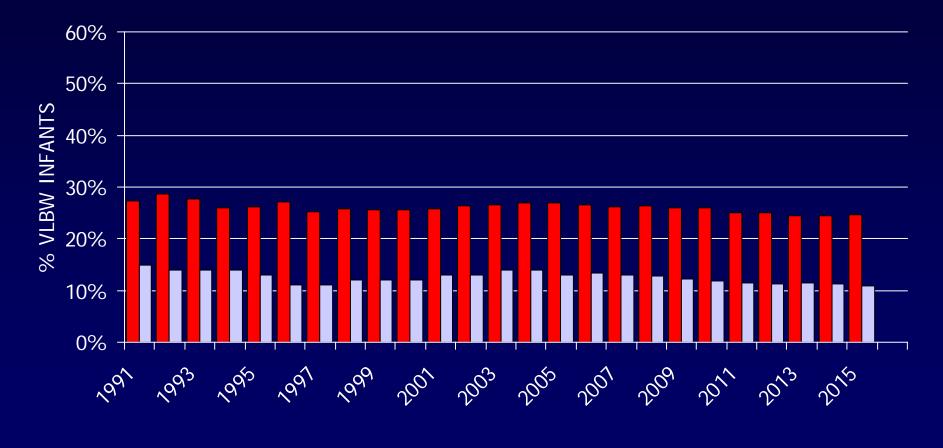
Outcome of concern	Appropriate choice of saturation range (SpO ₂)
Composite outcome of death or major disability	lower (85% to 89%) <i>or</i> higher (91% to 95%)
Death	higher (91% to 95%)
Retinopathy of Prematurity	lower (85% to 89%)
Necrotizing Enterocolitis	higher (91% to 95%)

Values

Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants.


Fowlie PW, Davis PG, McGuire W.

Cochrane Database Syst Rev. 2010 Jul 7;(7):CD000174. doi: 10.1002/14651858.CD000174.pub2. PMID: 20614421



Long-Term Effects of Indomethacin Prophylaxis in ELBW Infants Schmidt B and colleagues. N Engl J Med 2001; 344:1966-1972

Intraventricular Hemorrhage

VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2015

Any Intraventricular Hemorrhage

Severe Intraventricular Hemorrhage

Prophylactic Indomethacin

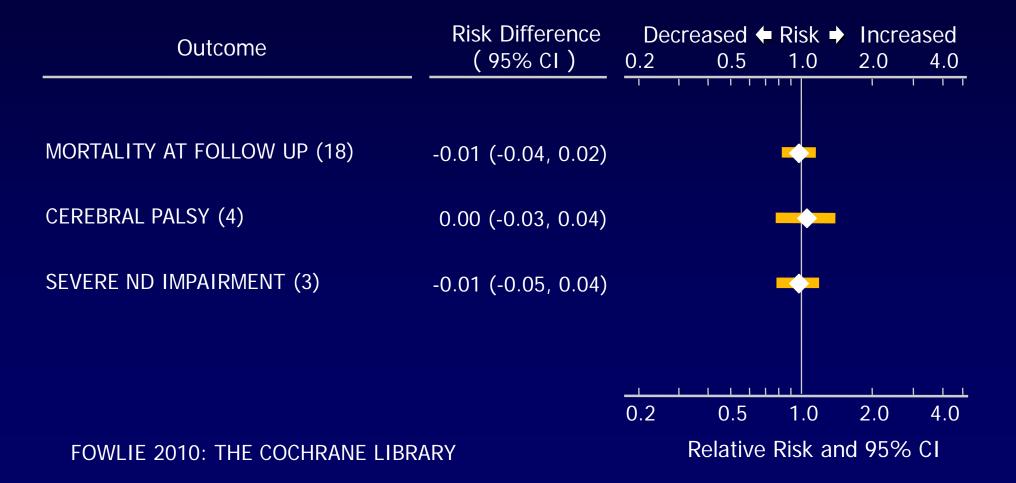
Meta-analysis of 19 trials

EFFECT ON PATENT DUCTUS ARTERIOSUS (PDA)

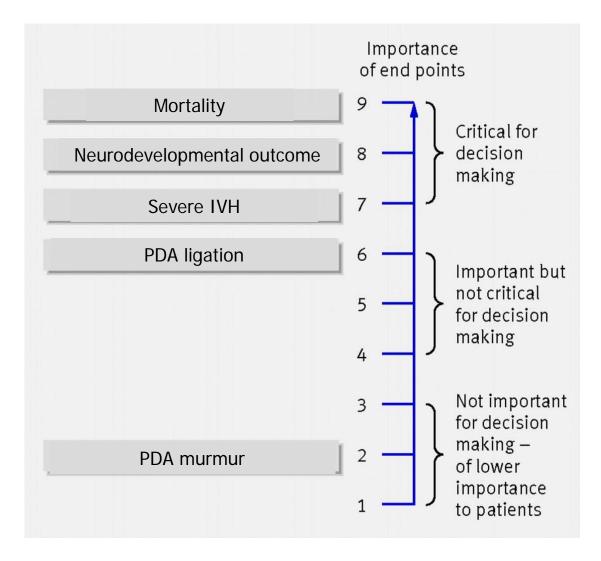
Outcome	Risk Difference (95% CI)	Decreased ← Risk → Increase 0.2 0.5 1.0 2.0 4				ased 4.0
	()3 /8 (1)	1	1 1 1 1	<u> </u>	1	4.0
PATENT DUCTUS ARTERIOSUS (7)	-0.27 (-0.32, -0.21)		-			
SYMPTOMATIC PDA (14)	-0.24 (-0.28, -0.21)		-			
PDA LIGATION (8)	-0.05 (-0.08, -0.03)		-			
		0.2	0.5	<u>_</u> 1.0	2.0	4.0
FOWLIE 2010: THE COCHRANE LIBI	RARY	-0.2		Risk and		

Prophylactic Indomethacin

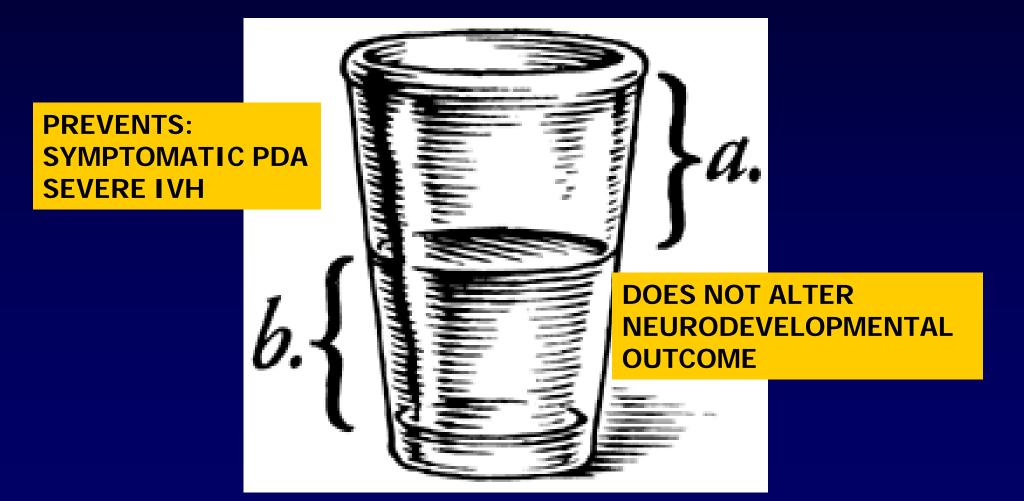
Meta-analysis of 19 trials


EFFECT ON CENTRAL NERVOUS SYSTEM INJURY

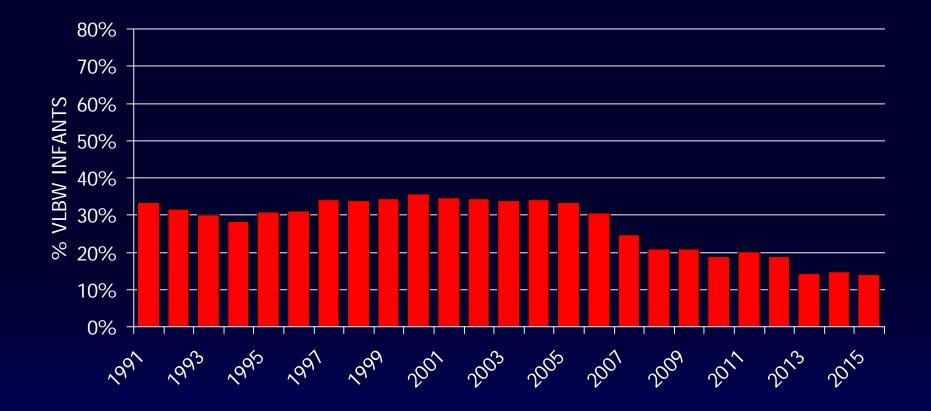
Outcome	Risk Difference (95% CI)	Dec 0.2	reased 0.5	■ Risk → 1.0	Incre 2.0	ased 4.0
		1 1			I	
INTRAVENTRICULAR HEMORRHAGE (14)	-0.04 (-0.08, -0.01)			•		
SEVERE IVH (14)	-0.05 (-0.07, -0.02)		_			
PROGRESSIVE IVH (2)	-0.08 (-0.29, 0.13)		_	•		
PERIVENTRICULAR LEUKOMALACIA (5)	-0.05 (-0.08, -0.01)	-	•	-		
WHITE MATTER INJURY (1)	-0.04 (-0.07, 0.00)			•		
					1	<u></u> .
		0.2	0.5	1.0	2.0	4.0
FOWLIE 2010: THE COCHRANE LIBRARY			Relative	Risk an	d 95%	CI


Prophylactic Indomethacin

Meta-analysis of 19 trials

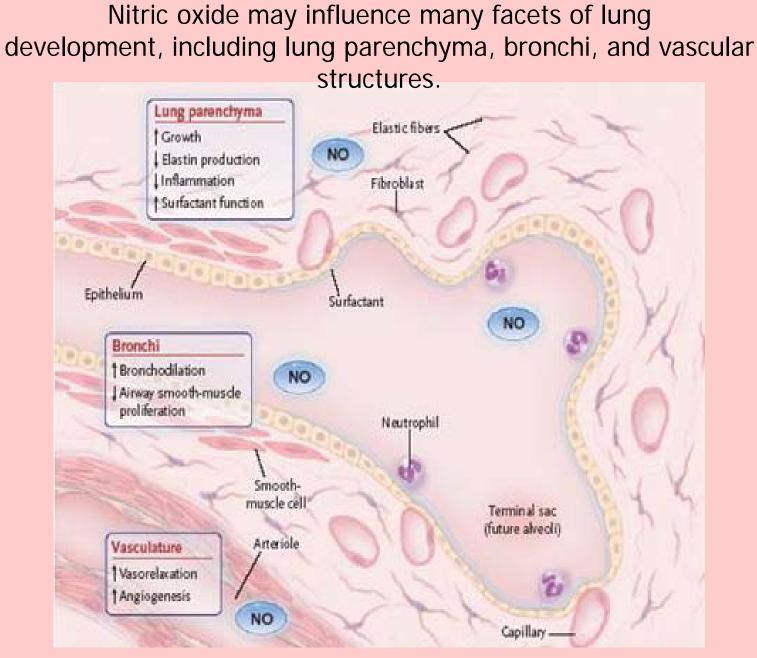

STATUS AT LATEST FOLLOW UP

Hierarchy of outcomes according to importance to patients to assess effect of prophylactic indomethacin



Prophylactic Indomethacin: Glass half full or half empty?

Indomethacin


VERMONT OXFORD NETWORK ANNUAL REPORTS 1991-2015

False precision/false optimism

Individual Patient Data Meta-analysis

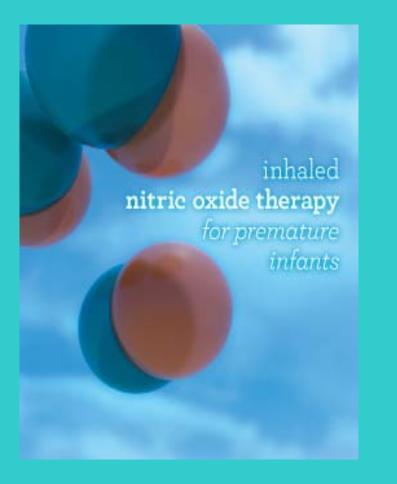
"There must be a pony in here someplace!"

Martin RJ, Walsh MC. NEJM 2005

Inhaled nitric oxide for respiratory failure in preterm infants

KJ Barrington, NN Finer

Cochrane Database of Systematic Reviews 2007, Issue 3. Art. No.: CD000509. DOI: 10.1002/14651858.CD000509.pub3.



NITRIC OXIDE FOR RESPIRATORY FAILURE IN PRETERM INFANTS

EFFECT ON DEATH OR BPD AT 36 WEEKS PMA

Study	Treatment n/N	Control n/N	Relative Risk (Fixed) 95% Cl	Weight (%)	Relative Risk (Fixed) 95% Cl
01 Studies with entry bef Dani 2006	ore three days bas 10/20	ed on oxygenation 18/20	_	5.5	0.56 [0.35, 0.88]
Hascoet 2005	33/57	41/74		10.9	1.04 [0.77, 1.41]
INNOVO 2005	49/55	48/53	+	14.9	0.98 [0.87, 1.12]
Kinsella 1999	37/48	29/32		10.6	0.85 [0.70, 1.03]
Mercier 1999	18/40	24/45		6.9	0.84 [0.54, 1.31]
Van Meurs 2005	167/210	168/210		51.2	0.99 [0.90, 1.09]
Subtotal (95% CI) Total events: 314 (Treatn Test for heterogeneity ch Test for overall effect z=	ii-square=8.31 df=5		•	100.0	0.95 [0.88, 1.02]
02 Studies with entry aft Ballard 2006	er three days base 165/294	d on BPD risk 182/288	<mark></mark>	90.2	0.89 [0.78, 1.02]
Subhedar 1997	20/20	21/22	-	9.8	1.05 [0.96, 1.15]
Subtotal (95% CI) Total events: 185 (Treatn Test for heterogeneity ch Test for overall effect z=	ii-square=10.15 df=	310) 1 p=0.001 l° =90.1%	•	100.0	0.90 [0.80, 1.02]
03 Studies of routine use Kinsella 2006	in intubated preter 282/398	m infants 295/395		81.8	0.95 [0.87, 1.03]
Schreiber 2003	51/105	65/102	_	18.2	0.76 [0.60, 0.97]
Subtotal (95% CI) Total events: 333 (Treatn Test for heterogeneity cl		497	•	100.0	0.91 [0.84, 0.99]

NIH Consensus Development Conference Statement: Inhaled Nitric-Oxide Therapy for Premature Infants

Taken as a whole, the available evidence does not support use of iNO in early-routine, early-rescue, or laterrescue regimens in the care of premature infants of <34 weeks' gestation who require respiratory support.

There are rare clinical situations, including pulmonary hypertension or hypoplasia, that have been inadequately studied in which iNO may have benefit in infants of <34 weeks' gestation.

In such situations, clinicians should communicate with families regarding the current evidence on its risks and benefits as well as remaining uncertainties.

CLINICAL REPORT Use of Inhaled Nitric Oxide in Preterm Infants

The results of randomized controlled trials, traditional meta-analyses, and an individualized patient data meta-analysis study indicate that neither rescue nor routine use of iNO improves survival in preterm infants with respiratory failure (Evidence quality, A; Grade of recommendation, strong).

The preponderance of evidence does not support treating preterm infants who have respiratory failure with iNO for the purpose of preventing/ameliorating BPD, severe intraventricular hemorrhage, or other neonatal morbidities (Evidence quality, A; Grade of recommendation, strong).

Pediatrics 2014

PEDIATRICS°

OFFICIAL JOURNAL OF THE AMERICAN ACADEMY OF PEDIATRICS

Off-label use of inhaled nitric oxide after release of NIH consensus statement.

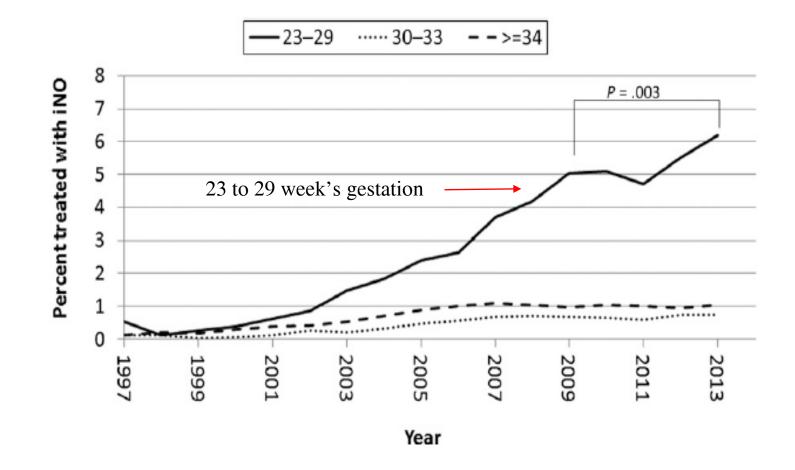
Ellsworth MA, Harris MN, Carey WA, Spitzer AR, Clark RH.

Pediatrics. 2015 Apr;135(4):643-8. doi: 10.1542/peds.2014-3290. Epub 2015 Mar 9.

PEDIATRICS°

OFFICIAL JOURNAL OF THE AMERICAN ACADEMY OF PEDIATRICS

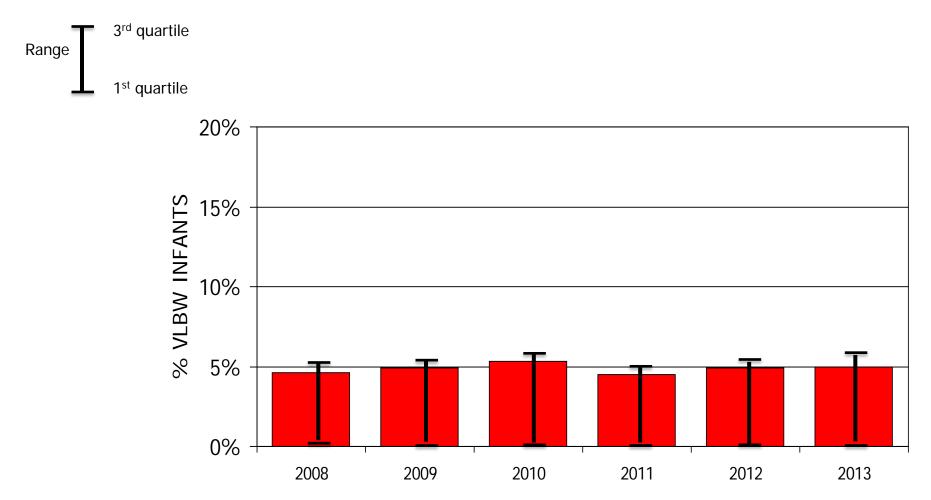
Ellsworth et al. Off-label use of inhaled nitric oxide after release of NIH consensus statement. Pediatrics. 2015 Apr;135(4):643-8.


The objective of this study was to describe utilization patterns of iNO in American NICUs in the years surrounding the release of the National Institutes of Health statement.

The Pediatrix Medical Group Clinical Data Warehouse was queried for the years 2009 to 2013 to describe first exposure iNO use among all admitted neonates stratified by gestational age.

PEDIATRICS

Change in percentage of infants treated with iNO from 1997 to 2013


OFFICIAL JOURNAL OF THE AMERICAN ACADEMY OF PEDIATRICS

Of all neonates who received iNO therapy in 2013, nearly half were < 34 weeks' gestation.

Inhaled Nitric Oxide in VLBW Infants

Vermont Oxford Network Annual Reports 2000-2012

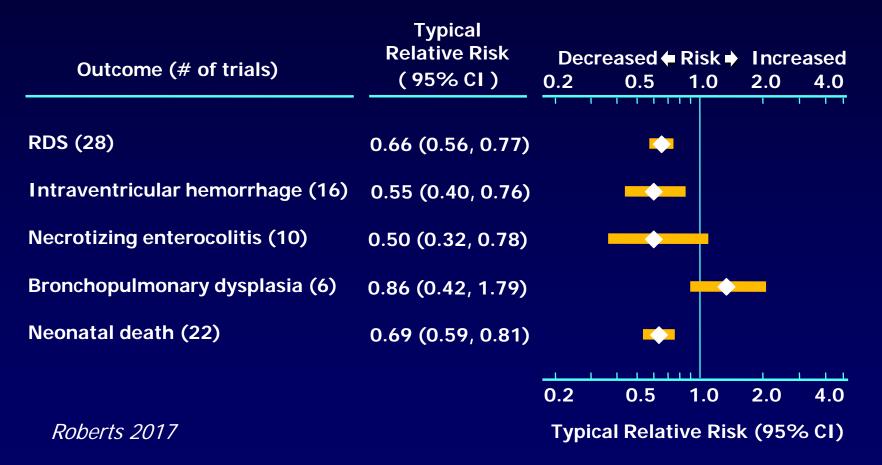
The evidence does not extend far enough!

Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.

Roberts D, Brown J, Medley N, Dalziel SR.

Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017 Mar 21;3:CD004454. doi: 10.1002/14651858.CD004454.pub3. Review. PMID: 28321847

Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.


This update includes 30 studies (7774 women and 8158 infants).

Risk of bias: Most studies are of low or unclear risk for most bias domains.

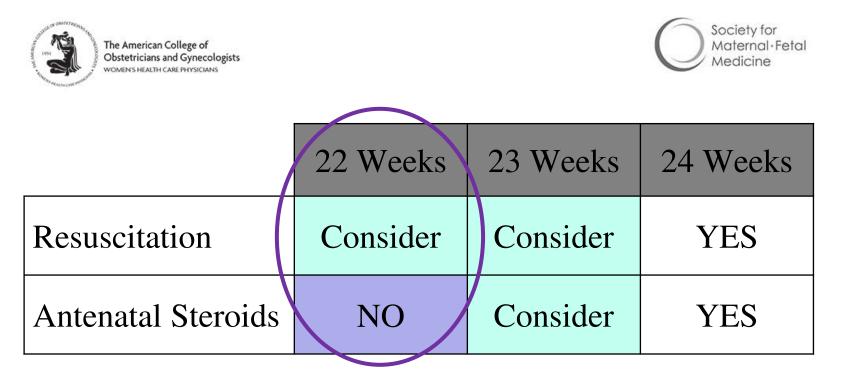
Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017 Mar 21;3:CD004454. doi: 10.1002/14651858.CD004454.pub3. Review. PMID: 28321847

PROPHYLACTIC CORTICOSTEROIDS PRIOR TO PRETERM BIRTH

OVERVIEW OF 30 RANDOMIZED CONTROLLED TRIALS

NIH Consensus Statement

Volume 12, Number 2 February 28-March 2, 1994


Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes

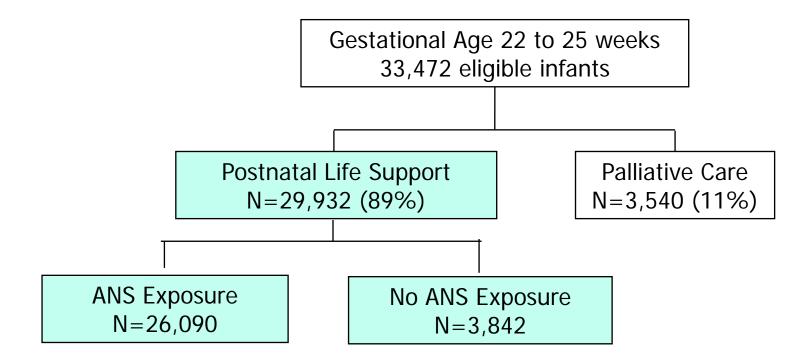
NATIONAL INSTITUTES OF HEALTH Office of the Director

CORTICOSTEROIDS FOR PRETERM BIRTH

"Antenatal corticosteroid therapy is indicated for women at risk of premature delivery with few exceptions and will result in a substantial decrease in neonatal morbidity and mortality, as well as substantial savings in health care costs"

Current ACOG Guidelines

(2017) Obstetric Care Consensus No. 6: Periviable Birth. *Obstet Gynecol.* Oct;130(4): e187-199.

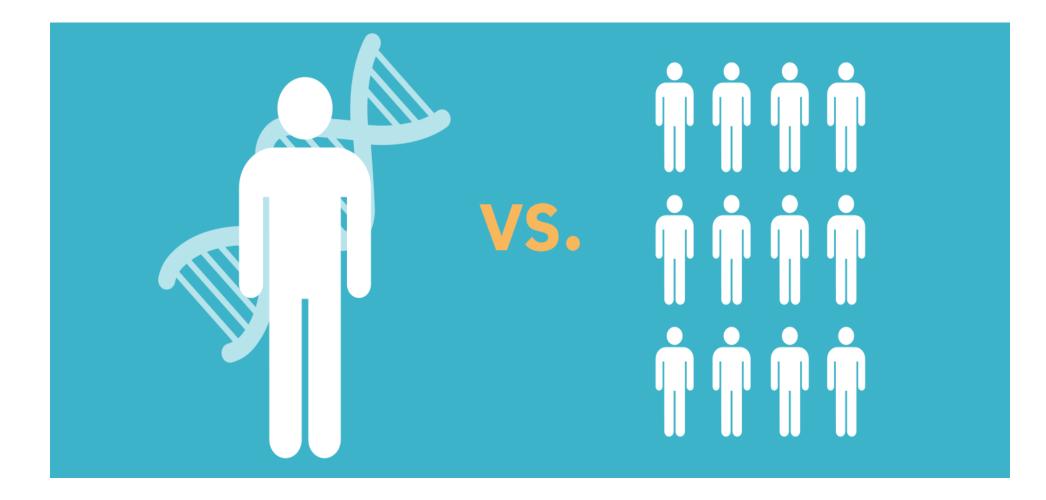


Original Investigation I Pediatrics

Association of Antenatal Steroid Exposure with Survival Among Infants Receiving Postnatal Life Support at 22 to 25 Weeks' Gestation

Danielle E. Y. Ehret, MD, MPH, Erika M. Edwards, PhD, MPH, Lucy T. Greenberg, MS, Ira M. Bernstein, MD, Jeffrey S. Buzas, PhD, Roger F. Soll, MD, Jeffrey D. Horbar, MD

JAMA Network Open 2018


Exclusions: Outborn Infants; Infants with Major Congenital Anomalies

Gestational Age	Proportion of infants receiving postnatal life support with ANS exposure
22 weeks	52%
23 weeks	83%
24 weeks	89%
25 weeks	91%

Survival					
Gestational Age	Postnatal Life Support Only	Postnatal Life Support with ANS Exposure	aRR (95% CI)		
22 weeks	17.7%	38.5%	2.11 (1.68-2.65)		
23 weeks	35.6%	55.4%	1.54 (1.40-1.70)		
24 weeks	59.6%	71.3%	1.18 (1.12-1.25)		
25 weeks	75.7%	83.0%	1.11 (1.07-1.14)		
22-25 weeks	51.9%	72.3%	1.37 (1.32-1.42)		

Survival without Major Morbidity					
Gestational Age	Postnatal Life Support Only	Postnatal Life Support with Antenatal Steroid Exposure	aRR (95% CI)		
22 weeks	1.0%	4.4%	4.35 (1.84-10.28)		
23 weeks	2.8%	5.9%	2.19 (1.48-3.25)		
24 weeks	9.5%	11.4%	1.27 (1.04-1.56)		
25 weeks	18.8%	22.2%	1.26 (1.10-1.44)		
22-25 weeks	9.1%	14.6%	1.67 (1.49-1.87)		

- Many infants born at 22 and 23 weeks' gestation received postnatal life support but lacked exposure to ANS
- Receipt of ANS was associated with higher survival and survival without major morbidities
- Should recommendations change?
- Should further trials be conducted?

Tension between treating individual patients and populations

