Association between the Asthma Predictive Index and levels of exhaled nitric oxide in infants and toddlers with recurrent wheezing

Juan Emilio Balinotti, M.D.‡, Alejandro Colom, M.D.§, Carlos Kofman, M.D.¶ and Alejandro Teper, M.D.†

ABSTRACT
It is difficult to make an early identification of which children with recurrent wheezing will develop asthma in the following years. The Asthma Predictive Index (API) is a questionnaire based on clinical and laboratory parameters used for this end. The measurement of fractional exhaled nitric oxide (FENO) has been used as a marker of eosinophilic airway inflammation in asthma patients.

Objective. To determine the association between the Asthma Predictive Index and FENO levels in children younger than 3 years old with recurrent wheezing.

Materials and methods. Observational, cross sectional study. Children younger than 36 months old with 3 or more episodes of bronchial obstruction in the past year who were inhaled corticosteroid-naive or leukotriene receptor antagonist-naive were included. After recording clinical data, FENO was measured by a chemiluminescence analyzer during tidal breathing (online method).

Results. A total of 52 children aged 5-36 months old were included. Patients with a positive API accounted for 60% of the population and had higher levels of FENO than those with a negative API, with a median (range) of 13.5 ppb (0.7-31) versus 5.6 ppb (0.1-20.8), respectively (p <0.01). A high FENO (>8 ppb) was observed in 74% of children with a positive API and in 26% of those with a negative API (p <0.01).

Conclusions. This study found an association between high levels of exhaled nitric oxide and a positive Asthma Predictive Index in children younger than 3 years old with recurrent wheezing.

Key words: asthma predictive algorithm, exhaled nitric oxide, recurrent wheezing, infants and toddlers.

INTRODUCTION
Cohort studies have demonstrated that approximately half of the infants and toddlers have at least one episode of bronchial obstruction in their first three years of life, and more than 50% of them have one or more recurrent episodes.1 This is why many infants and toddlers only have transient wheezing in their early childhood, especially during viral infections, while others will have recurrent bronchial obstruction episodes for a longer period caused by different triggering factors. The latter account for the population with a higher risk of having bronchial asthma.2 Diagnosing asthma at an early age poses a challenge for pediatricians and neumonologists. The Asthma Predictive Index (API) was designed based on the Tucson cohort, and is a questionnaire that has been validated in different populations,3,4 for the identification of children younger than 3 years old with recurrent wheezing who will develop asthma at school age.5,6 Though the API’s specificity is high (97%), its sensitivity is low (16%). The predictive value of this index enables to ascertain that 77% of patients younger than 3 years old with a positive API will have asthma between 6 and 13 years old, while if the API is negative this probability is only 3%.7

Over the past years, the measurement of fractional exhaled nitric oxide (FENO) has become a potentially useful tool for assessing, managing and diagnosing asthma. It is easy to measure and it enables to non invasively measure the degree of eosinophilic airway inflammation with no need for a bronchoalveolar lavage.8 Adults and children with asthma and atopy have high levels of FENO and these values tend to decrease after an anti-inflammatory treatment.9

The objective of this article was to establish if there is an association between API and FENO values in children younger than 3 years old with recurrent wheezing.
MATERIAL AND METHODS

Design

Observational, cross sectional study.

Population

Patients younger than 3 years old with at least three bronchial obstruction episodes in the past 12 months seen at the Respiratory Center of Hospital de Niños “Ricardo Gutiérrez” between March 2009 and April 2010 were included. Children had to be inhaled corticosteroid-naive or leukotriene receptor antagonist-naive and they could not have received systemic corticosteroids in the former month. Patients with a heart condition or identified chronic pulmonary disease (cystic fibrosis, primary ciliary dyskinesia or tuberculosis), and preterm infants (gestational age equal to or lower than 36 weeks) were excluded.

Methods

One of the investigators was in charge of making the API questions to the parents. Data on peripheral blood eosinophilia ≥4% were obtained from the tests previously performed on the patients. A CBC was requested to those who did not have such data. Children with a positive API were those with one major criterion or two minor criteria, as described in Table 1. Then a different investigator, blinded to API results, measured FENO values. For this measurement, an Ecomedics CLD 88 (Dürnten, Swiss) chemiluminescence analyzer was used with the tidal breathing online method. A DENOX 88 module was added to the equipment to ensure that the patient was breathing in NO-free ambient air and the expiratory flow was regulated at 50 ml/s, according to international standards. Before measuring each patient, the ultrasonic pneumotachograph was calibrated using a 100 ml syringe (Hans Rudolph, Inc.). With the child preferably (and spontaneously) asleep or in a calm waking state, FE\textsubscript{NO} values were recorded for one minute during tidal breathing through a tight facemask that covered the child’s mouth and nose. FE\textsubscript{NO} values were measured once values were stable (trough phase) at 60-80% of expiratory volume. Results were reported as an average of three technically acceptable maneuvers with a difference of up to 10%. The following secondary outcome measures were also recorded: weight, height, gender, smoking during pregnancy, passive smoking, and attendance to a daycare center or kindergarten.

Ethical considerations

The study was approved by the hospital Research and Teaching Committee and the Bioethics Committee. The informed consent was requested to and obtained from one or both parents.

Statistical analysis

The sample size was established at 15 API (+) cases and 15 API (-) cases to get a ≥70% sensitivity, with a 95% confidence interval and a power of 80%. Outcome measure values were indicated as mean or median, and standard deviation or range, as applicable. FENO values were expressed in ppb (parts per billion) and were considered normal if results were between 2 and 8 ppb. Differences in FE\textsubscript{NO} values in each group were studied using proportion’s test. A value of p <0.05 was considered significant.

RESULTS

Of the 53 patients included (age range: 5-36 months old), only one was excluded because FE\textsubscript{NO} measurements were not acceptable as per international recommendations. The characteristics of the 52 studied children are detailed in Table 2. Of them, 31 patients (60%) had a positive API and 21 (40%) had a negative API. No differences were found in the groups in terms of age, gender, attendance to a daycare center or exposure to tobacco.

The median (range) FE\textsubscript{NO} values in API (+) patients were 13.5 (0.7-31) ppb, while the values for API (-) patients were 5.6 (0.1-20.8) ppb (Figure 1). A high FE\textsubscript{NO} (>8 ppb) was observed in 74% of children with a positive API and in 26% of those with a negative API (p <0.01).

TABLE 1. Asthma Predictive Index (API)

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. One of the parents with a medical diagnosis of asthma.</td>
<td>1. Medical diagnosis of allergic rhinitis.</td>
</tr>
<tr>
<td>2. Medical diagnosis of eczema.</td>
<td>2. Wheezing unrelated to colds.</td>
</tr>
<tr>
<td>3. Peripheral blood eosinophilia ≥4%.</td>
<td></td>
</tr>
</tbody>
</table>

API (+) = one major criterion or two minor criteria. Sensitivity: 16%, specificity: 97%, positive predictive value: 77%, and negative predictive value: 68%.
DISCUSSION

In this study, an association between high levels of exhaled nitric oxide and a positive asthma predictive index was found in children younger than 3 years old with recurrent wheezing, reflecting the presence of an eosinophilic airway inflammation.

Previous studies conducted in asthma collaborative patients described the association between high FE_{NO} values (single breath method) and an increased number of eosinophils detected in induced sputum, bronchoalveolar lavage, and bronchial biopsy material. In non collaborative children, the most commonly used method to measure FE_{NO} is multiple breathing and its reference values have been published by Daniel, et al.

Table 2. Characteristics of the study population (n= 52)

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>API (+) (n= 31)</th>
<th>API (-) (n= 21)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (months), mean ± SD</td>
<td>19.8 ± 11</td>
<td>15.6 ± 8</td>
<td>0.13</td>
</tr>
<tr>
<td>Boys</td>
<td>71%</td>
<td>62%</td>
<td>0.66</td>
</tr>
<tr>
<td>Weight (kg), mean ± SD</td>
<td>12.2 ± 2</td>
<td>10 ± 3</td>
<td>0.01</td>
</tr>
<tr>
<td>Height (cm), mean ± SD</td>
<td>83.5 ± 10</td>
<td>76.8 ± 10</td>
<td>0.02</td>
</tr>
<tr>
<td>Only one parent has asthma</td>
<td>51.6%</td>
<td>0%</td>
<td><0.001</td>
</tr>
<tr>
<td>Eczema diagnosed by a physician</td>
<td>29%</td>
<td>0%</td>
<td>0.007</td>
</tr>
<tr>
<td>Rhinitis diagnosed by a physician</td>
<td>41.9%</td>
<td>0%</td>
<td>0.001</td>
</tr>
<tr>
<td>Wheezing unrelated to colds</td>
<td>96.7%</td>
<td>81%</td>
<td>0.15</td>
</tr>
<tr>
<td>Eosinophilia ≥4%</td>
<td>66.6%</td>
<td>11.7%</td>
<td>0.001</td>
</tr>
<tr>
<td>FE_{NO} measurement while awake</td>
<td>9/31</td>
<td>7/21</td>
<td>0.56</td>
</tr>
<tr>
<td>Attending a daycare center</td>
<td>16%</td>
<td>4.7%</td>
<td>0.38</td>
</tr>
<tr>
<td>Prenatal exposure to tobacco</td>
<td>16%</td>
<td>19%</td>
<td>0.78</td>
</tr>
<tr>
<td>Postnatal exposure to tobacco</td>
<td>45%</td>
<td>52%</td>
<td>0.60</td>
</tr>
</tbody>
</table>

FE_{NO}: fractional exhaled nitric oxide. API: asthma predictive index.

Figure 1. FE_{NO} values in API (-) and API (+) patients

FE_{NO} values expressed in ppb (parts per billion). API: asthma predictive index.
API (+) group: median 13.5; interquartile range (8.9-18.1); min. value 0.7; max. value 31.4
API (-) group: median 5.6; interquartile range (2.7-13.4); min. value 0.1; max. value 20.8.
and toddlers with recurrent wheezing, this study included a larger number of patients who were inhaled corticosteroid-naive or leukotriene receptor antagonist-naive. These drugs reduce airway nitric oxide levels because of the decrease in the expression of the nitric oxide synthase enzyme, which can be induced in the respiratory epithelium of asthma patients.15,16

In a recently published study, Sardón Prado, et al. obtained similar results with a more limited sample of patients of whom 25\% received anti-inflammatory therapy.17 In addition, even though Moeller, et al. used a different measurement technique whereby exhaled air is collected for a subsequent quantification (off-line method), they reached similar conclusions.18 Gabriele, et al. compared children younger than 2 years old with bronchopulmonary dysplasia, cystic fibrosis and recurrent wheezing and observed that only atopic children in the latter group had significantly higher F\textsubscript{ENO}20 values.

Our study has some limitations. In the first place, the API has a low sensitivity to predict bronchial asthma. It was chosen because it is the most commonly used method to predict asthma and because there is no other tool of greater effectiveness. To overcome this difficulty and to establish the sensitivity, specificity and F\textsubscript{ENO} validity as an asthma predictor index, these children are clinically followed-up and their nitric oxide levels are measured periodically. In the future, this will allow to establish in what degree the addition of F\textsubscript{ENO} measurement can modify the API\textquotesingle s predictive capacity. Secondly, although the technique chosen to measure nitric oxide in non collaborative children in a clinical environment is the one recommended by international guidelines, it may not be the most sensitive technique. It is probable that F\textsubscript{ENO} samples obtained using a single compartment facemask (mouth and nose) may contain nitric oxide from the lower and upper airways. We selected it based on its simplicity and practicality, and this can explain results variability and overlapping. F\textsubscript{ENO} measurement, by separating nasal nitric oxide from lower airway nitric oxide, requires a more complex technique and the sedation of the patient, turning it into a complex and time-consuming method.20 On the other hand, Franklin, et al. wrote an article describing the ideal method for measuring F\textsubscript{ENO} in toddlers and infants and found no differences in the measurement of exhaled nitric oxide using the nasal compartment and the levels measured using both the nose and the mouth.21

Bronchial obstruction events are very common in the first years of life and many of them tend to improve when children reach school age. API (+) children have a better response to anti-inflammatory treatment than API (-) children, and also have a greater likelihood of developing asthma once they are in the school age.22

CONCLUSION

In our study, an association was found between high exhaled nitric oxide levels and a positive asthma predictive index in infants and toddlers with recurrent wheezing. We believe that the measurement of FE\textsubscript{NO} can help identify subsets of children with similar respiratory symptoms that may have a different course and therapeutic response.

REFERENCES
