Benefits and Risks of Electronic Health Records

Rainu Kaushal, MD, MPH

Director, Center for Informatics and Health Systems Improvement
Weill Cornell Medical College and Graduate School

Chief, Division of Quality and Medical Informatics
Weill Cornell Medical College

Director of Pediatric Quality and Safety
Komansky Center for Children’s Health at NYPH

HITEC Executive Director
Large U.S. Investment in Health IT: Meaningful Use Program

1. Electronic health records (EHRs)
 – $9-27 billion in Medicare/Medicaid incentives to physicians and hospitals

2. Adoption support
 – Workforce
 – Regional extension centers

3. Health information exchange (HIE)
 – State grants
 – Standards and certification
 – Privacy and security
What is an Interoperable EHR?
Pumpkin

Meaningful Use of a Pumpkin
Health IT is Foundational for Health Reform

Foundation of Health IT
Electronic Health Records and Information Exchange

Sustainable quality & efficiency improvements

Care delivery innovations
• Decision support
• Rx management
• Care coordination
• Discharge planning

Measurement & Provider Feedback
• Quality
• Efficiency
• Pop. health

Payment Reform
• Reforms to make improvements in efficiency/quality sustainable

5
Overview

• EHRs and safety benefits
• EHRs and safety risks
• An approach to comparing the safety benefits to the safety risks
• Values that must be balanced in this approach
EHRs and Safety Benefits

• Medication safety: strongest data for this domain of patient safety but still limited
 • CPOE
 • E-prescribing
 • Bar coding
 • Smart IV pumps
 • Clinical decision support
 • Computerized ADE monitoring
• Early data regarding laboratory safety (both critical tests and follow-up), smart monitoring, and hand-overs
Computerized Provider Order Entry (CPOE)

Medication Errors and Adverse Drug Events (ADEs)

Source: Bates et al. JAMA. 1998; 280(15)1311-16
Electronic Prescribing: Medication Errors

Bar-coding: Potential Adverse Drug Events

- 51% decrease
- 19% decrease

Smart IV Pumps: Continuous Medication Infusion Errors

73% decrease

Larsen, Parker, Cash, et al. *Pediatrics* 2005
HIT and Safety Benefits

• Laboratory safety
 • RCT critical result notification: time to resolution 29% shorter\(^1\)

• Smart monitoring
 • Remote monitoring in a 10-bed ICU decreased mortality 46-68%\(^2\)

• Hand-overs
 • Computerized sign-out reduced adverse event risk 5-fold\(^3\)

\(^1\) Kuperman G et al, *JAMIA* 2000
\(^2\) Rosenfeld BA et al, *Crit Care Med* 2000
\(^3\) Petersen LA et al, *Jt Comm Journal* 1998
EHRs and Safety Risks

- Many documented risks
- Most qualitative or anecdotal
- Few quantitative
 - No standard operational definition of a computer error limiting the number of studies
 - Existing quantitative data has some important flaws
1. **Hardware and software failures**

- Power outage 5/9/2006 lasted for 55 hours and affected all Kaiser Permanente sites
 - Began during a hardware upgrade
- Full scale failure at Beth Israel Deaconess Medical Center lasted for 4 days
 - Advanced system including orders, and access to labs, radiology reports, and EKGs
 - Researcher sharing data with colleagues inadvertently flooded network

2. Clinical Content

- Gaps in available decision support
 - Acetaminophen dosing decision support available for all weight ranges except one
 - Increased incidence of dosing errors for that one weight range
 - Corrected the decision support with resultant decrease in incidence of dosing errors
3. Implementation processes

- Three times increase in mortality after the introduction of CPOE at Children’s Hospital of Pittsburgh but not at Seattle Children’s Hospital

- Differences:
 - CHP deployed in 6 days
 - Limited involvement of ICU staff
 - No order entry until patient was in hospital
 - No order sets in critical care unit
 - Only inter-facility transfers

4. Workarounds

- Bar-coding workarounds: 4.2% patients, 10.3% medications
- 15 types of workarounds
 - Affixing patient identification barcodes to computer carts, scanners, doorjambs, or nurses' belt rings
 - Carrying several patients' pre-scanned medications
- 31 causes of workarounds
 - Unreadable medication barcodes
 - Malfunctioning scanners or failing batteries
 - Unreadable or missing patient ID wristbands (chewed, soaked, missing)
 - Non bar-coded medications

5. Communication

• 18% (217 of 1196) of imaging alerts not acknowledged
• 8% of alerts lacked timely follow-up
• Dual communication to two health care providers as a “safe-guard” to protect against loss of follow-up was associated with lack of timely follow-up
• However, verbal communication improved rates of timely follow up

6. Measurement and monitoring

- RCT to reduce concomitant orders for warfarin and bactrim by introducing a nearly hard-stop alert
- IRB initially concerned with having a control group
- Significant decrease in concomitant orders in intervention group
- Early termination of RCT since 4 dangerous delays in ordering of medications when deemed necessary for patients

An Approach to Comparing HIT Safety Benefits versus Risks

• HIT is a health service

• A well-accepted approach in the quality of care literature for comparing health services:

 • **Overuse**: Provision of a health service where risks outweigh benefits
 • Too many alerts leading to alert fatigue

 • **Underuse**: Failure to provide a health service when their benefits exceed their risks
 • No provision of clinical decision support

 • **Misuse**: When an appropriate health service has been selected but is then poorly provided
Misuse: Electronic Prescribing

85% decrease

48% decrease

Conclusions

• Documented benefits for a few technologies in specific settings in medication safety
 • More technologies, settings, and domains of safety need to be studied

• Significant and diverse risks
 • More quantitative measures of HIT related risks and of patient harm need to be developed and employed
 • Greater focus on morbidity/mortality instead of errors

• Balancing risks/benefits: overuse, underuse, misuse
 • HIT needs to be developed to address more types of safety
 • Need more work to determine and spread most effective HIT
 • Ongoing measurement from multiple sources and iterative refinement