Biliary Atresia

Karen F. Murray, MD Professor of Pediatrics Director, Hepatobiliary Program Seattle Children's

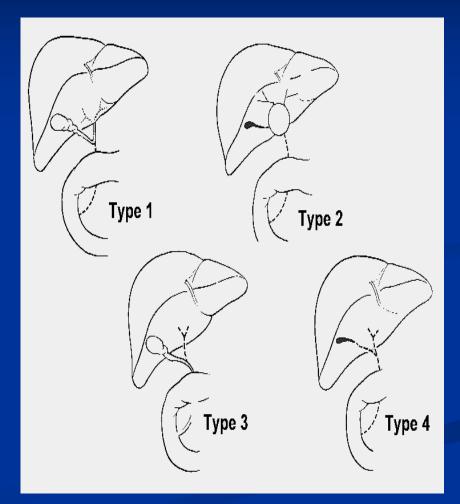
Biliary Atresia

- Incidence: 1/8,000-15,000 live births
- **Girls > boys 1.5:1**
- The most common cause of surgical obstructive jaundice presenting in the 1st 3 months.
- Leading indication for liver transplantation in infants and children (40-50%)

Biliary Atresia

Definition

 Progressive sclerosing inflammatory process of extrahepatic and intrahepatic bile ducts causing complete biliary obstruction in the first three months of life


Location

Segmental or complete

Most commonly involves complete extrahepatic bile duct extending into the hepatic porta

Biliary Atresia: Surgical Anatomy

- Type 1 (3%) common bile duct
- Type 2 (6%) cyst in hilum communicating with intrahepatic bile ducts
- Type 3 (19%) GB, cystic duct and common bile duct patent
- Type 4 (72%) complete extrahepatic atresia

Clinical Presentation

Healthy term female, growing well

Jaundiced ≥ 2 week check-up

Weeks later: jaundiced, hepatomegaly, acholic stools

Biliary Atresia: 100% fatal by 3 yrs if treatment unsuccessful

Biliary Atresia: Phenotypes

Embryonic or *"congenital"* 10-20% Prenatal process causing BD injury Early presentation – born with atretic duct ■No jaundice free interval Other congenital anomalies Polysplenia (BASM) syndrome ■8-11%, 3-4% in Asia

Biliary Atresia: Phenotypes

80%

Perinatal or acquired

Post-natal BD injury
Viral or toxic insult
Frequently have jaundice-free period
No other congenital anomalies

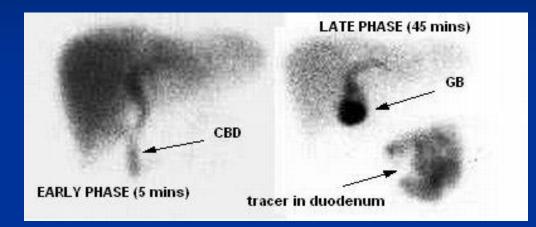
Biliary Atresia: Diagnosis

Within the first 2-3 weeks following birth
Persistent jaundice
Acholic stools
Dark urine

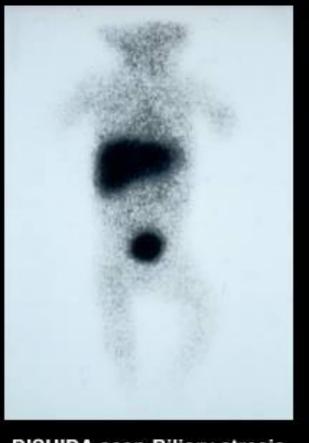
Biliary Atresia: Evaluation

Laboratory
 | GGT/ALK Phos

■ | ALT/AST


Conjugated Bili
 > 20% of total

Hepatomegaly


Acholic Stool

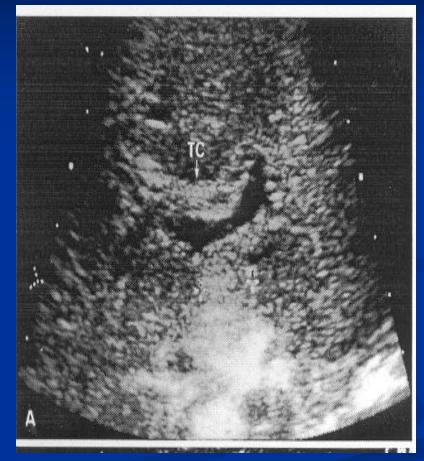
Biliary Atresia: Nuclear scan

Normal

Biliary atresia

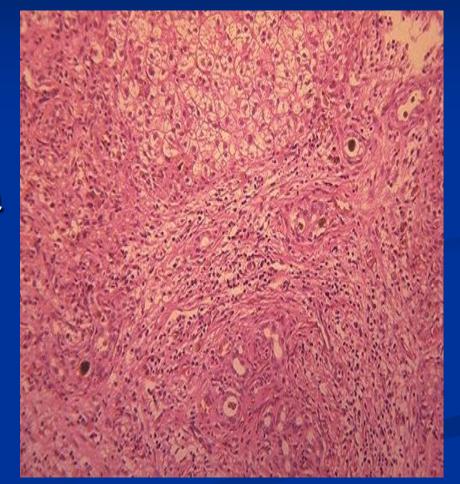
DISHIDA scan-Biliary atresia.

Biliary Atresia: Role of US


Eval for:
biliary dilatation
obstruction
biliary anomalies
choledochal cyst

Triangular cord" sign

"Triangular cord" sign


• A triangular/tubular, echogenic density seen just cranial to the portal vein bifurcation in BA Simple, noninvasive, inexpensive, timesaving, and reliable

Park et al J Hepatobil Pancreat Surg 2001;8:337 Kotb et al Pediatrics 2001;108:416

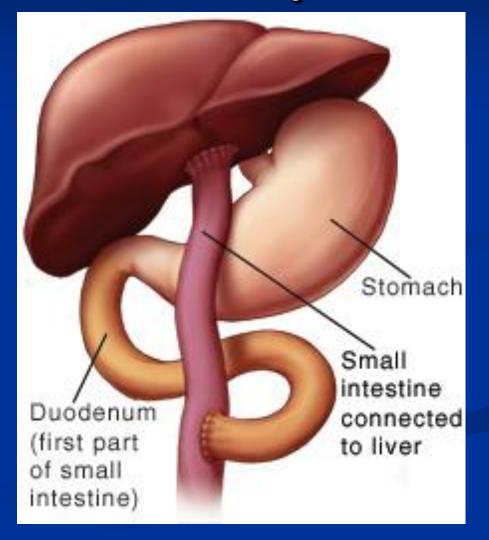
Biliary Atresia: Histology

Portal tract widening Biliary duct edema **Fibrosis** Bile duct proliferation

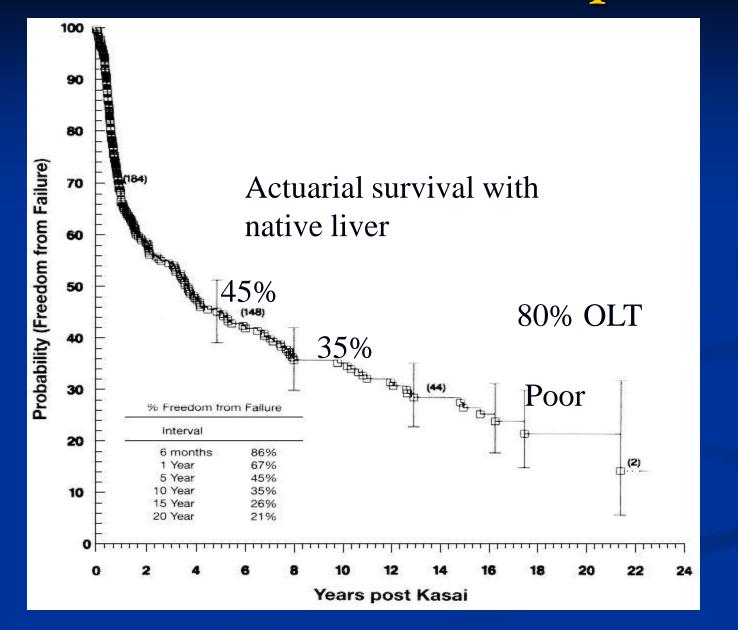
Bile duct proliferation, bile plugs

Biliary Atresia: Cholangiogram

 \mathbf{N}


BA

Cholangiography is standard to assess morphology and patency of the biliary tree


Can be performed percutaneously, endoscopicly, or intraoperatively

Biliary Atresia Treatment: Kasai Portoenterostomy

A 45 cm Roux en Y loop anastomosed to the cut edge of the transected liver in the porta hepatis

Survival Post-Kasai: 266 patients

1972-1996 Ann Surg 1997

Prognosticators of a poor post-Kasai outcome

Poor outcome is determined by progressive <u>intrahepatic</u> bile duct disease

Age/liver injury at Kasai
Post-Kasai cholangitis
Other

Etiology of Biliary Atresia

Defective morphogenesis/genetics
Laterality sequence genes, Jagged1
Immune dysregulation
Autoimmune disease
Infection-viral, other

"Embryonic" Biliary Atresia 10-20%

Abnromal Bile duct development (Gene mutation)

Bile flow initiation

Bile duct obstruction

Intrahepatic inflammation Immune injury/ Autoimmune response

Cirrhosis

"Perinatal" Biliary Atresia 80%

Perinatal infection

Bile duct epithelial cell alterations/Expression of Ag

Inflammatory TH1/autoimmune response

BD apoptosis, fibrosis, obstruction

Intrahepatic cholestasis and inflammation Fibrosis and cirrhosis

Biliary Atresia: Etiology Developmental Morphogenesis

- Ductal Plate malformation morphology- failure of normal remodeling at the hepatic hilum
- JAGGED1 missense mutations detected in BA patients
 Mouse model (autosomal recessive deletion of the INV mouse gene) *
 - Abnormal development of the hepatobiliary system
 - Jaundice
 - Laterality defects
- * No INV mutations detected in human BA, but were in nephronophthisis type 2.

Biliary Atresia: Etiology Immunologic

- TH1 cytokines (IL-12, IFN-γ, IL-2, TNF-α) in portal inflammation of BA but not other cholestatic diseases.
- BA liver has up-regulated TH1 proinflammatory genes and decreased TH2 genes.

Mack et al. Pediatr Res 2004;56:79-87 Bezerra et al. Lancet 2002;360:1653-1659

Biliary Atresia: Etiology Autoimmunity

- Antineutrophil cytoplasmic antibodies (ANCA) in the serum of BA.
- anti-Rho antibodies increased in mothers of BA.
- But...family Hx of autoimmunity is no different in BA than other cholestatic diseases.

Vasiliauskis et al. Hepatology 1995;22:87 Burch et al. JPGN 2000;31 (Suppl 2);S108

Biliary Atresia: Etiology Viral Infection

Mixed reports of seasonal clustering.
Increased risk in low birth weight and pre-term infants.

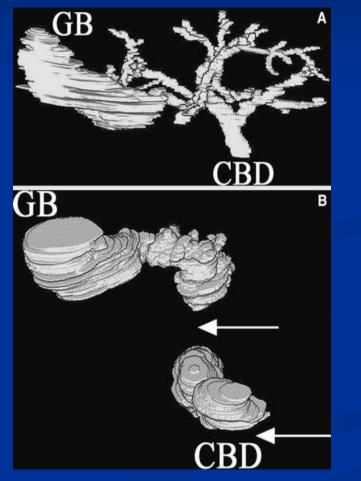
Many viruses have been investigated and some detected in human BA, but the association less clear.

Biliary Atresia: Etiology Viral Infection

Reovirus 3:

Obliterative cholangiopathy in weanling mice
 Unsubstantiated in humans: +/- detected by RT-PCR

Rotavirus group C:


Rhesus rotavirus (RRV) infection of 12-24 h mice produces BA by 2-3 weeks; inflammation is the same as in humans with BA

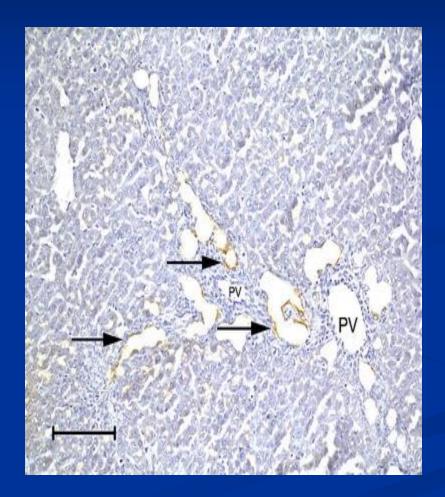
Detection in human BA by RT-PCR variable

Biliary Atresia: Viral Infection 3D biliary tree in RRV-infected mice

Atresia (*arrows*) at the distal end of the CBD and segmentally at the proximal CBD.

Dilatation of the entire biliary system.

12 days p.i.


control

RRV-infected

Chan et al Pediatr Surg Int 2005;21:615-20

Biliary Atresia: Viral Infection Liver section from RRV-infected mouse

Bile ducts: denuded of epithelia, and ductular proliferation (*arrows*) around the portal veins (*PV*).

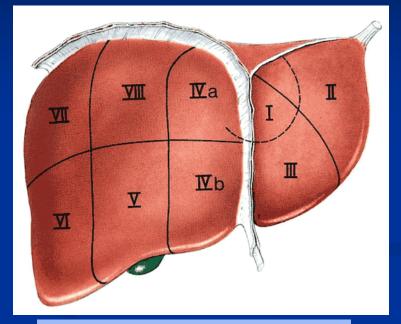
15 days p.i.

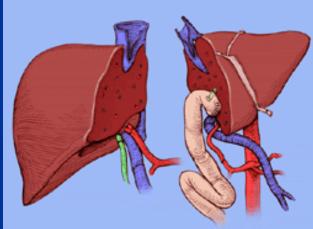
Stain: anticytokeratin AE1/AE3 antibody (*brown*).

Chan et al Pediatr Surg Int 2005;21:615-20

Biliary Atresia: Complications

- Cholangitis (post-Kasai)
- Portal hypertension
- Intrahepatic biliary cysts (bile lakes)
- Hepatopulmonary syndrome and pulmonary hypertension
- Hepatorenal syndrome
- Malignancies (HCC, cholangiocarcinoma)


Post-Kasai Treatment : Drugs Ongoing controversies


Use of corticosteroids ChiLDREN (NIHsponsored placebocontrolled trial of corticosteroid post-Kasai) Use of prophylactic antibiotics

Liver Transplantation: 40% in Pediatrics for Biliary Atresia

Living-related Left lateral segment **Cadaveric:** ■ Whole organ ■ Left lobe (segments 2/3) ■ Left liver (2/3/4) Split liver

Biliary atresia: Survival

5 and 10 yr. Survival rates 32% and 27% with native liver
Overall survival 71%
With liver transplant, survival rates 85-90%

Normal growth and development Normal quality of life